Linear Arboricity of the Tensor Products of Graphs

被引:0
|
作者
Paulraja, P. [1 ]
Sivasankar, S. [1 ,2 ]
机构
[1] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
[2] NGM Coll, Dept Math, Pollachi 642001, India
关键词
PACKING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear arboricity, la(G), of a graph G is the minimum number of linear forests which partition the edge set of G. Akiyama et al. conjectured that la(G) = inverted right perpendicular Delta(G)+1/2 inverted left perpendicular for any regular graph G. In this paper, we prove this conjecture for K-m x K-n and K-m,K-m x K-n, where x denotes the tensor product of graphs. As a consequence, the above conjecture has been verified to be true for G x H, for any pair of graphs G and H, with Delta(G) = m - 1 and Delta(H) = n - 1, where m and n are the numbers of vertices of G and H, respectively.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 50 条
  • [31] Linear Arboricity of NIC-Planar Graphs
    Bei Niu
    Xin Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 924 - 934
  • [32] The Linear Arboricity of Series-Parallel Graphs
    Jianliang Wu
    Graphs and Combinatorics, 2000, 16 : 367 - 372
  • [33] ON POINT-LINEAR ARBORICITY OF PLANAR GRAPHS
    WANG, JF
    DISCRETE MATHEMATICS, 1988, 72 (1-3) : 381 - 384
  • [34] On the linear k-arboricity of cubic graphs
    Discrete Math, 1-3 (293-297):
  • [35] On linear 2-arboricity of certain graphs
    Chen, Jijuan
    Wang, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 441
  • [36] The Linear 2-Arboricity of Planar Graphs
    Ko-Wei Lih
    Li-Da Tong
    Wei-Fan Wang
    Graphs and Combinatorics, 2003, 19 : 241 - 248
  • [37] Linear 2-Arboricity of Toroidal Graphs
    Weifan Wang
    Yuanchao Li
    Xiaoxue Hu
    Yiqiao Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1907 - 1921
  • [38] THE LINEAR (n - 1)-ARBORICITY OF CARTESIAN PRODUCT GRAPHS
    Zuo, Liancui
    He, Shengjie
    Xue, Bing
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2015, 9 (01) : 13 - 28
  • [39] OPTIMAL HAMILTON COVERS AND LINEAR ARBORICITY FOR RANDOM GRAPHS
    Draganic, Nemanja
    Glock, Stefan
    Correia, Munha
    Sudakov, Benny
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 921 - 935
  • [40] Linear k-arboricity of complete bipartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    UTILITAS MATHEMATICA, 2020, 114 : 295 - 308