Spatio-temporal data fusion for fine-resolution subsidence estimation

被引:9
|
作者
Chu, Hone-Jay [1 ]
Ali, Muhammad Zeeshan [1 ]
Burbey, Thomas J. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Geomat, Tainan, Taiwan
[2] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
关键词
Spatio-temporal data fusion; Subsidence; Spatial regression; Kernel weight; RIVER ALLUVIAL-FAN; AQUIFER-SYSTEM COMPACTION; LAND SUBSIDENCE; YUNLIN;
D O I
10.1016/j.envsoft.2021.104975
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Land subsidence provides important information about the spatial and temporal changes occurring in the sub-surface (e.g. groundwater levels, geology, etc.). However, sufficient subsidence data are difficult to obtain using only one sensor or survey, often resulting in a tradeoff between spatial resolution and temporal coverage. This study aims to estimate the high spatio-temporal resolution land subsidence by using a kernel-based vector data fusion approach between annual leveling and monthly subsidence monitoring well data, while invoking an invariant relation of subsidence information. Subsidence patterns and processes can be identified when spatiotemporal fusion of sensor data are implemented. In this subsidence investigation in Yunlin and Chunghua counties, Taiwan, the root mean square error (RMSE) is 0.52 cm in the fusion stage, and the mapping RMSE is 0.53 cm in the interpolation. The fused subsidence data readily show that the subsidence hotspot varies with time and space. The subsidence hotspots are in the western region during the winter (related to aquaculture activities) but move to the inland areas of Yunlin County during the following spring (related to agricultural activities). The proposed approach can help explain the spatio-temporal variability of the subsidence pattern.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Estimation of Housing Price Variations Using Spatio-Temporal Data
    Chica-Olmo, Jorge
    Cano-Guervos, Rafael
    Chica-Rivas, Mario
    SUSTAINABILITY, 2019, 11 (06)
  • [22] Fine spatio-temporal prediction of fishing time using big data
    Zhao, Yizhi
    Chen, Peng
    Zheng, Gang
    Wang, Difeng
    Yang, Jingsong
    Li, Xiunan
    Luo, Dan
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [23] SPATIO-TEMPORAL INTERACTION IN VISUAL RESOLUTION
    RASHBASS, C
    JOURNAL OF PHYSIOLOGY-LONDON, 1968, 196 (02): : P102 - &
  • [24] Spatio-temporal conflict detection and resolution
    Howarth, Richard J.
    Tsang, Edward P. K.
    Constraints, 1998, 3 (04) : 343 - 361
  • [25] Spatio-temporal conflict detection and resolution
    Howarth R.J.
    Tsang E.P.K.
    Constraints, 1998, 3 (4) : 343 - 361
  • [26] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [27] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [28] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [29] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [30] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853