Spatio-temporal data fusion for fine-resolution subsidence estimation

被引:9
|
作者
Chu, Hone-Jay [1 ]
Ali, Muhammad Zeeshan [1 ]
Burbey, Thomas J. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Geomat, Tainan, Taiwan
[2] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
关键词
Spatio-temporal data fusion; Subsidence; Spatial regression; Kernel weight; RIVER ALLUVIAL-FAN; AQUIFER-SYSTEM COMPACTION; LAND SUBSIDENCE; YUNLIN;
D O I
10.1016/j.envsoft.2021.104975
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Land subsidence provides important information about the spatial and temporal changes occurring in the sub-surface (e.g. groundwater levels, geology, etc.). However, sufficient subsidence data are difficult to obtain using only one sensor or survey, often resulting in a tradeoff between spatial resolution and temporal coverage. This study aims to estimate the high spatio-temporal resolution land subsidence by using a kernel-based vector data fusion approach between annual leveling and monthly subsidence monitoring well data, while invoking an invariant relation of subsidence information. Subsidence patterns and processes can be identified when spatiotemporal fusion of sensor data are implemented. In this subsidence investigation in Yunlin and Chunghua counties, Taiwan, the root mean square error (RMSE) is 0.52 cm in the fusion stage, and the mapping RMSE is 0.53 cm in the interpolation. The fused subsidence data readily show that the subsidence hotspot varies with time and space. The subsidence hotspots are in the western region during the winter (related to aquaculture activities) but move to the inland areas of Yunlin County during the following spring (related to agricultural activities). The proposed approach can help explain the spatio-temporal variability of the subsidence pattern.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Spatio-Temporal Fusion of LiDAR and Camera Data for Omnidirectional Depth Perception
    Zhang, Linlin
    Yu, Xiang
    Adu-Gyamfi, Yaw
    Sun, Carlos
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (04) : 308 - 322
  • [42] Spatio-temporal fusion for remote sensing data:an overview and new benchmark
    Jun LI
    Yunfei LI
    Lin HE
    Jin CHEN
    Antonio PLAZA
    Science China(Information Sciences), 2020, 63 (04) : 7 - 23
  • [43] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [44] Spatio-temporal approach for noise estimation
    Zlokolica, V.
    Pizurica, A.
    Vansteenkiste, E.
    Philips, W.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1393 - 1396
  • [45] SPATIO-TEMPORAL ESTIMATION OF WILDFIRE GROWTH
    Sharma, Balaji R.
    Kumar, Manish
    Cohen, Kelly
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [46] Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment
    Ali, Shoaib
    Liu, Dong
    Fu, Qiang
    Cheema, Muhammad Jehanzeb Masud
    Quoc Bao Pham
    Rahaman, Md Mafuzur
    Thanh Duc Dang
    Duong Tran Anh
    REMOTE SENSING, 2021, 13 (17)
  • [47] Spatio-temporal modeling of fine particulate matter
    Sujit K. Sahu
    Alan E. Gelfand
    David M. Holland
    Journal of Agricultural, Biological, and Environmental Statistics, 2006, 11 : 61 - 86
  • [48] Spatio-temporal prediction of regional land subsidence via ConvLSTM
    Leng, Jing
    Gao, Mingliang
    Gong, Huili
    Chen, Beibei
    Zhou, Chaofan
    Shi, Min
    Chen, Zheng
    Li, Xiang
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2023, 33 (10) : 2131 - 2156
  • [49] Spatio-temporal prediction of regional land subsidence via ConvLSTM
    Jing Leng
    Mingliang Gao
    Huili Gong
    Beibei Chen
    Chaofan Zhou
    Min Shi
    Zheng Chen
    Xiang Li
    Journal of Geographical Sciences, 2023, 33 : 2131 - 2156
  • [50] SPATIO-TEMPORAL SUBSIDENCE ESTIMATION OF JHARIA COAL FIELD, INDIA USING SBAS-DINSAR WITH COSMO-SKYMED DATA
    Dey, Tapas Kumar
    Biswas, Kousik
    Chakravarty, Debashish
    Misra, Arundhati
    Samanta, Biswajit
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2123 - 2126