Error estimators and the adaptive finite element method on large strain deformation problems

被引:2
|
作者
Meyer, Arnd [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
mesh refinement; a posteriori error estimation; finite element method;
D O I
10.1002/mma.1130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the well-known residual-based error estimator in linear elasticity to the case of non-linear deformation problems based on large strain and demonstrate its use in adaptive mesh control. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:2148 / 2159
页数:12
相关论文
共 50 条
  • [1] An adaptive finite element method for large deformation frictional contact problems
    Scherf, O
    Wriggers, P
    [J]. IUTAM SYMPOSIUM ON DISCRETIZATION METHODS IN STRUCTURAL MECHANICS, 1999, 68 : 35 - 42
  • [2] Uniform convergence and a posteriori error estimators for the enhanced strain finite element method
    Braess, D
    Carstensen, C
    Reddy, BD
    [J]. NUMERISCHE MATHEMATIK, 2004, 96 (03) : 461 - 479
  • [3] Uniform convergence and a posteriori error estimators for the enhanced strain finite element method
    D. Braess
    C. Carstensen
    B.D. Reddy
    [J]. Numerische Mathematik, 2004, 96 : 461 - 479
  • [4] Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Nicaise, Serge
    Piriou, Francis
    Nemitz, Nicolas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (12) : 5715 - 5723
  • [5] Large deformation analysis of geomechanics problems by a combined rh-adaptive finite element method
    Kardani, M.
    Nazem, M.
    Sheng, D.
    Carter, J. P.
    [J]. COMPUTERS AND GEOTECHNICS, 2013, 49 : 90 - 99
  • [6] A POSTERIORI ERROR ESTIMATORS IN THE FINITE-ELEMENT METHOD
    AINSWORTH, M
    CRAIG, A
    [J]. NUMERISCHE MATHEMATIK, 1992, 60 (04) : 429 - 463
  • [7] APPLICATIONS OF THE BOUNDARY ELEMENT METHOD TO LARGE STRAIN LARGE DEFORMATION PROBLEMS OF VISCOPLASTICITY
    CHANDRA, A
    MUKHERJEE, S
    [J]. JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 1983, 18 (04): : 261 - 270
  • [8] An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering
    Jin, Yin-Fu
    Yuan, Wei-Hai
    Yin, Zhen-Yu
    Cheng, Yung-Ming
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2020, 44 (07) : 923 - 941
  • [9] Symmetry reductions and a posteriori finite element error estimators for bifurcation problems
    Chien, CS
    Jeng, BW
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07): : 2091 - 2107
  • [10] Robustness of error estimators for finite element solutions of problems with high orthotropy
    Strouboulis, T.
    Wang, D. L.
    Babuska, I.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (21-26) : 1946 - 1966