Error estimators and the adaptive finite element method on large strain deformation problems

被引:2
|
作者
Meyer, Arnd [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
mesh refinement; a posteriori error estimation; finite element method;
D O I
10.1002/mma.1130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the well-known residual-based error estimator in linear elasticity to the case of non-linear deformation problems based on large strain and demonstrate its use in adaptive mesh control. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:2148 / 2159
页数:12
相关论文
共 50 条
  • [21] A posteriori error estimators in finite element method for time and frequency domain
    Gawrylczyk, Konstanty Marek
    Alkhatib, Fawwaz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2007, 83 (11): : 216 - 218
  • [22] A posteriori finite element error estimators for parametrized nonlinear boundary value problems
    Liu, JL
    Rheinboldt, WC
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (5-6) : 605 - 637
  • [23] Comparison of Residual and Hierarchical Finite Element Error Estimators in Eddy Current Problems
    Dular, Patrick
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Piriou, Francis
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 501 - 504
  • [24] Stabilized smoothed particle finite element method for coupled large deformation problems in geotechnics
    Yuan, Wei-Hai
    Liu, Ming
    Zhang, Xian-Wei
    Wang, Hui-Lin
    Zhang, Wei
    Wu, Wei
    [J]. ACTA GEOTECHNICA, 2023, 18 (03) : 1215 - 1231
  • [25] A temporal stable smoothed particle finite element method for large deformation problems in geomechanics
    Yuan, Wei-Hai
    Liu, Ming
    Guo, Ning
    Dai, Bei-Bing
    Zhang, Wei
    Wang, Yuan
    [J]. COMPUTERS AND GEOTECHNICS, 2023, 156
  • [26] Smoothed Particle Finite-Element Method for Large-Deformation Problems in Geomechanics
    Zhang, Wei
    Yuan, Weihai
    Dai, Beibing
    [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS, 2018, 18 (04)
  • [27] Stabilized smoothed particle finite element method for coupled large deformation problems in geotechnics
    Wei-Hai Yuan
    Ming Liu
    Xian-Wei Zhang
    Hui-Lin Wang
    Wei Zhang
    Wei Wu
    [J]. Acta Geotechnica, 2023, 18 : 1215 - 1231
  • [28] Adaptive finite element discretization in elasticity and elastoplasticity by global and local error estimators using local Neumann-problems
    Stein, E
    Ohnimus, S
    Walhorn, E
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 : S147 - S150
  • [29] η%-superconvergence of finite element solutions and error estimators
    Zhang, L
    Strouboulis, T
    Babuska, I
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 393 - 404
  • [30] η%-Superconvergence of Finite Element Solutions and Error Estimators
    L. Zhang
    T. Strouboulis
    I. Babuška
    [J]. Advances in Computational Mathematics, 2001, 15 : 393 - 404