Uniform convergence and a posteriori error estimators for the enhanced strain finite element method

被引:0
|
作者
D. Braess
C. Carstensen
B.D. Reddy
机构
[1] Ruhr-University,Faculty of Mathematics
[2] Vienna University of Technology,Institute for Applied Mathematics and Numerical Analysis
[3] University of Cape Town,Department of Mathematics and Applied Mathematics
来源
Numerische Mathematik | 2004年 / 96卷
关键词
Finite Element Method; Error Estimator; Uniform Convergence; Theoretical Explanation; Posteriori Error;
D O I
暂无
中图分类号
学科分类号
摘要
Enhanced strain elements, frequently employed in practice, are known to improve the approximation of standard (non-enhanced) displacement-based elements in finite element computations. The first contribution in this work towards a complete theoretical explanation for this observation is a proof of robust convergence of enhanced element schemes: it is shown that such schemes are locking-free in the incompressible limit, in the sense that the error bound in the a priori estimate is independent of the relevant Lamé constant. The second contribution is a residual-based a posteriori error estimate; the L2 norm of the stress error is estimated by a reliable and efficient estimator that can be computed from the residuals.
引用
收藏
页码:461 / 479
页数:18
相关论文
共 50 条
  • [1] Uniform convergence and a posteriori error estimators for the enhanced strain finite element method
    Braess, D
    Carstensen, C
    Reddy, BD
    [J]. NUMERISCHE MATHEMATIK, 2004, 96 (03) : 461 - 479
  • [2] A POSTERIORI ERROR ESTIMATORS IN THE FINITE-ELEMENT METHOD
    AINSWORTH, M
    CRAIG, A
    [J]. NUMERISCHE MATHEMATIK, 1992, 60 (04) : 429 - 463
  • [3] A posteriori error estimators in finite element method for time and frequency domain
    Gawrylczyk, Konstanty Marek
    Alkhatib, Fawwaz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2007, 83 (11): : 216 - 218
  • [4] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [5] Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods
    Yu, Guozhu
    Xie, Xiaoping
    Carstensen, Carsten
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (29-32) : 2421 - 2433
  • [6] A posteriori error estimators for mixed finite element methods in linear elasticity
    Marco Lonsing
    Rüdiger Verfürth
    [J]. Numerische Mathematik, 2004, 97 : 757 - 778
  • [7] Symmetry reductions and a posteriori finite element error estimators for bifurcation problems
    Chien, CS
    Jeng, BW
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07): : 2091 - 2107
  • [8] A posteriori error estimators for mixed finite element methods in linear elasticity
    Lonsing, M
    Verfürth, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (04) : 757 - 778
  • [9] A posteriori error estimators for the first-order least-squares finite element method
    Ku, JaEun
    Park, Eun-Jae
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) : 293 - 300
  • [10] Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    Feischl, Michael
    Fuehrer, Thomas
    Heuer, Norbert
    Karkulik, Michael
    Praetorius, Dirk
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (03) : 309 - 389