Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method

被引:24
|
作者
Tang, Zuqi [1 ]
Le Menach, Yvonnick [1 ]
Creuse, Emmanuel [2 ,3 ]
Nicaise, Serge [4 ]
Piriou, Francis [1 ]
Nemitz, Nicolas [5 ]
机构
[1] Univ Lille 1, L2EP, F-59655 Villeneuve Dascq, France
[2] Univ Lille 1, LPP UMR 8524, F-59655 Villeneuve Dascq, France
[3] Univ Lille 1, INRIA Lille Nord Europe, F-59655 Villeneuve Dascq, France
[4] Univ Valenciennes, FR CNRS 2956, LAMAV, F-59313 Valenciennes 09, France
[5] EDF R&D, THEMIS, F-92141 Clamart, France
关键词
Error estimator; finite element method; magnetostatic problem; SUPERCONVERGENT PATCH RECOVERY; COMPUTATION; EQUATIONS; FIELD;
D O I
10.1109/TMAG.2013.2271993
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In finite element computations, the choice of the mesh is crucial to obtain accurate solutions. In order to evaluate the quality of the mesh, a posteriori error estimators can be used. In this paper, we develop residual-based error estimators for magnetostatic problems with both classical formulations in term of potentials used, as well as the equilibrated error estimator. We compare their behaviors on some numerical applications, to understand the interest of each of them in the remeshing process.
引用
收藏
页码:5715 / 5723
页数:9
相关论文
共 50 条