A posteriori error estimates for the Fokker-Planck and Fermi pencil beam equations

被引:12
|
作者
Asadzadeh, M [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
关键词
D O I
10.1142/S0218202500000380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a posteriori error estimates for a finite element method for steady-state, energy dependent, Fokker-Planck and Fermi pencil beam equations in two space dimensions and with a forward-peaked scattering (i.e. with velocities varying within the right unit semi-circle). Our estimates are based on a transversal symmetry assumption, together with a strong stability estimate for an associated dual problem combined with the Galerkin orthogonality of the finite element method.
引用
收藏
页码:737 / 769
页数:33
相关论文
共 50 条
  • [31] ON FOKKER-PLANCK EQUATIONS WITH IN- AND OUTFLOW OF MASS
    Burger, Martin
    Humpert, Ina
    Pietschmann, Jan-Frederik
    KINETIC AND RELATED MODELS, 2020, 13 (02) : 249 - 277
  • [32] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1825 - 1827
  • [33] A numerical method for generalized Fokker-Planck equations
    Han, Weimin
    Li, Yi
    Sheng, Qiwei
    Tang, Jinping
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 171 - +
  • [34] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [35] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [36] Generalized entropies and the Langevin and Fokker-Planck equations
    Akimoto, M
    Suzuki, A
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) : 974 - 978
  • [37] Hypergeometric foundations of Fokker-Planck like equations
    Plastino, A.
    Rocca, M. C.
    PHYSICS LETTERS A, 2016, 380 (22-23) : 1900 - 1903
  • [38] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [39] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [40] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124