A posteriori error estimates for the Fokker-Planck and Fermi pencil beam equations

被引:12
|
作者
Asadzadeh, M [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
关键词
D O I
10.1142/S0218202500000380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a posteriori error estimates for a finite element method for steady-state, energy dependent, Fokker-Planck and Fermi pencil beam equations in two space dimensions and with a forward-peaked scattering (i.e. with velocities varying within the right unit semi-circle). Our estimates are based on a transversal symmetry assumption, together with a strong stability estimate for an associated dual problem combined with the Galerkin orthogonality of the finite element method.
引用
收藏
页码:737 / 769
页数:33
相关论文
共 50 条
  • [21] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [22] Thermodynamics and fractional Fokker-Planck equations
    Sokolov, IM
    PHYSICAL REVIEW E, 2001, 63 (05):
  • [23] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [24] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [25] Deformed multivariable fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [26] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [27] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [28] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &
  • [29] On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
    Matculevich, Svetlana
    Wolfmayr, Monika
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 779 - 804
  • [30] PROPAGATOR NORM AND SHARP DECAY ESTIMATES FOR FOKKER-PLANCK EQUATIONS WITH LINEAR DRIFT
    Arnold, Anton
    Schmeiser, Christian
    Signorello, Beatrice
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (04) : 1047 - 1080