ON FOKKER-PLANCK EQUATIONS WITH IN- AND OUTFLOW OF MASS

被引:4
|
作者
Burger, Martin [1 ]
Humpert, Ina [2 ]
Pietschmann, Jan-Frederik [3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Westfalische Wilhelms Univ Munster, Inst Angew Math Anal & Numer, Orleans Ring 10, D-48149 Munster, Germany
[3] Tech Univ Chemnitz, Fak Math, Reichenhainer Str 41, D-09126 Chemnitz, Germany
关键词
Fokker-Planck equations; Entropy methods; Exponential decay; Mass evolution; Logarithmic-Sobolev inequality; GLOBAL EQUILIBRIUM; SYSTEMS; MODELS; TREND; DECAY;
D O I
10.3934/krm.2020009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by modeling transport processes in the growth of neurons, we present results on (nonlinear) Fokker-Planck equations where the total mass is not conserved. This is either due to in- and outflow boundary conditions or to spatially distributed reaction terms. We are able to prove exponential decay towards equilibrium using entropy methods in several situations. As there is no conservation of mass it is difficult to exploit the gradient flow structure of the differential operator which renders the analysis more challenging. In particular, classical logarithmic Sobolev inequalities are not applicable any more. Our analytic results are illustrated by extensive numerical studies.
引用
收藏
页码:249 / 277
页数:29
相关论文
共 50 条
  • [1] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [2] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [3] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [4] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [5] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [6] Mass transport in Fokker-Planck equations with tilted periodic potential
    Herrmann, Michael
    Niethammer, Barbara
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (04) : 709 - 736
  • [7] Nonlocal Approximations to Fokker-Planck Equations
    Molino, Alexis
    Rossi, Julio D.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 35 - 60
  • [8] The multivariate Langevin and Fokker-Planck equations
    Gillespie, DT
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (10) : 1246 - 1257
  • [9] RENORMALIZED EQUATIONS IN FOKKER-PLANCK MODELS
    BREY, JJ
    MORILLO, M
    JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19): : 6957 - 6961
  • [10] ON THE CANONICAL FORMULATION OF FOKKER-PLANCK EQUATIONS
    RYTER, D
    HELVETICA PHYSICA ACTA, 1982, 55 (02): : 231 - 232