A Non-Local Regularization of the Short Pulse Equation

被引:0
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ,3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[3] Ist Nazl Alta Matemat INdAM, Grp Nazl Anal Matemat Probabil & Loro Applicaz GN, Rome, Italy
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2021年 / 6卷 / 02期
关键词
Existence; uniqueness; stability; short pulse equation; non-local formulation; Cauchy problem; OSTROVSKY-HUNTER EQUATION; NONHOMOGENEOUS INITIAL-BOUNDARY; FINITE-DIFFERENCE SCHEME; GLOBAL WELL-POSEDNESS; CONSERVATION-LAWS; DYNAMICS; MODEL; WELLPOSEDNESS; CONVERGENCE; SCATTERING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The short pulse equation provides a model for the propagation of ultra-short light pulses in silica optical fibers. In this paper, we consider a nonlocal regularization of that equation and prove its well-posedness.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [41] Image despeckling with non-local total bounded variation regularization
    Jidesh, P.
    Banothu, Balaji
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 631 - 646
  • [42] Non-local sparse regularization model with application to image denoising
    Ning He
    Jin-Bao Wang
    Lu-Lu Zhang
    Guang-Mei Xu
    Ke Lu
    [J]. Multimedia Tools and Applications, 2016, 75 : 2579 - 2594
  • [43] Non-local regularization for FE simulation of damage in ductile materials
    Jackiewicz, J
    Kuna, M
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2003, 28 (3-4) : 684 - 695
  • [44] THE PHASE EQUATION FOR NON-LOCAL SEPARABLE POTENTIALS
    KERMODE, MW
    MELHEM, Z
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1983, 9 (12) : 1497 - 1505
  • [45] Scalar field equation with non-local diffusion
    Felmer, Patricio
    Vergara, Ignacio
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (05): : 1411 - 1428
  • [46] On a non-local equation arising in population dynamics
    Coville, Jerome
    Dupaigne, Louis
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 727 - 755
  • [47] CONCENTRATION PHENOMEN IN SOME NON-LOCAL EQUATION
    Bonnefon, Olivier
    Coville, Jerome
    Legendre, Guillaume
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (03): : 763 - 781
  • [48] A non-local perturbation of the logistic equation in RN
    Delgado, M.
    Molina-Becerra, M.
    Santos, J. R., Jr.
    Suarez, A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 147 - 158
  • [49] Threshold result for a non-local parabolic equation
    Wu, Yong-hui
    [J]. Mathematical Methods in the Applied Sciences, 1997, 20 (01): : 933 - 943
  • [50] A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL
    邵景峰
    郭志昌
    姚文娟
    严冬
    吴勃英
    [J]. Acta Mathematica Scientia, 2022, 42 (05) : 1779 - 1808