Scalar field equation with non-local diffusion

被引:12
|
作者
Felmer, Patricio [1 ]
Vergara, Ignacio [1 ]
机构
[1] Univ Chile, CNRS UChile, Dept Ingn Matemat, Ctr Modelamiento Matemat UMR2071, Santiago, Chile
关键词
QUANTUM-MECHANICS; COMPACTNESS; COLLAPSE;
D O I
10.1007/s00030-015-0328-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested on the existence of ground state solutions for fractional field equations of the form integral (I - Delta)(alpha) u = f(x, u) in IRN, u > 0 in IRN, lim(vertical bar x vertical bar ->infinity) u(x) = 0, where and f is an appropriate super-linear sub-critical nonlinearity. We prove regularity, exponential decay and symmetry properties for these solutions. We also prove the existence of infinitely many bound states and, through a non-local Pohozaev identity, we prove nonexistence results in the supercritical case.
引用
收藏
页码:1411 / 1428
页数:18
相关论文
共 50 条
  • [1] Scalar field equation with non-local diffusion
    Patricio Felmer
    Ignacio Vergara
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1411 - 1428
  • [2] A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL
    邵景峰
    郭志昌
    姚文娟
    严冬
    吴勃英
    [J]. Acta Mathematica Scientia, 2022, 42 (05) : 1779 - 1808
  • [3] A Non-Local Diffusion Equation for Noise Removal
    Shao, Jingfeng
    Guo, Zhichang
    Yao, Wenjuan
    Yan, Dong
    Wu, Boying
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1779 - 1808
  • [4] A Non-Local Diffusion Equation for Noise Removal
    Jingfeng Shao
    Zhichang Guo
    Wenjuan Yao
    Dong Yan
    Boying Wu
    [J]. Acta Mathematica Scientia, 2022, 42 : 1779 - 1808
  • [5] Analysis of scalar perturbations in cosmological models with a non-local scalar field
    Koshelev, Alexey S.
    Vernov, Sergey Yu
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (08)
  • [6] REACTION DIFFUSION EQUATION WITH NON-LOCAL TERM ARISES AS A MEAN FIELD LIMIT OF THE MASTER EQUATION
    Ichikawa, Kazuhisa
    Rouzimaimaiti, Mahemauti
    Suzuki, Takashi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (01): : 115 - 126
  • [7] On a stochastic partial differential equation with non-local diffusion
    Azerad, Pascal
    Mellouk, Mohamed
    [J]. POTENTIAL ANALYSIS, 2007, 27 (02) : 183 - 197
  • [8] Dirichlet problem for an equation of non-local diffusion with source
    Bogoya, Mauricio
    Maricel Elorreaga, Luz
    [J]. BOLETIN DE MATEMATICAS, 2012, 19 (01): : 55 - 64
  • [9] On a Stochastic Partial Differential Equation with Non-local Diffusion
    Pascal Azerad
    Mohamed Mellouk
    [J]. Potential Analysis, 2007, 27 : 183 - 197
  • [10] Non-local scalar field on deSitter and its infrared behaviour
    Narain, Gaurav
    Kajuri, Nirmalya
    [J]. PHYSICS LETTERS B, 2019, 791 : 143 - 148