A Non-Local Regularization of the Short Pulse Equation

被引:0
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ,3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[3] Ist Nazl Alta Matemat INdAM, Grp Nazl Anal Matemat Probabil & Loro Applicaz GN, Rome, Italy
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2021年 / 6卷 / 02期
关键词
Existence; uniqueness; stability; short pulse equation; non-local formulation; Cauchy problem; OSTROVSKY-HUNTER EQUATION; NONHOMOGENEOUS INITIAL-BOUNDARY; FINITE-DIFFERENCE SCHEME; GLOBAL WELL-POSEDNESS; CONSERVATION-LAWS; DYNAMICS; MODEL; WELLPOSEDNESS; CONVERGENCE; SCATTERING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The short pulse equation provides a model for the propagation of ultra-short light pulses in silica optical fibers. In this paper, we consider a nonlocal regularization of that equation and prove its well-posedness.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [21] Local and Non-Local Regularization for Semi-supervised Deep Learning
    Cheng, Guo-Chen
    Hou, Yue-Xian
    Zhao, Xiao-Zhao
    Yu, Qian
    [J]. INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 272 - 278
  • [22] Well-posedness and blow-up for a non-local elliptic–hyperbolic system related to short-pulse equation
    Lianhong Wang
    Fengquan Li
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [23] Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions
    Nguyen Duc Phuong
    Le Dinh Long
    Anh Tuan Nguyen
    Baleanu, Dumitru
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (12) : 2199 - 2219
  • [24] Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions
    Nguyen Duc PHUONG
    Le Dinh LONG
    Anh Tuan NGUYEN
    Dumitru BALEANU
    [J]. Acta Mathematica Sinica,English Series, 2022, 38 (12) : 2199 - 2219
  • [25] Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions
    Nguyen Duc Phuong
    Le Dinh Long
    Anh Tuan Nguyen
    Dumitru Baleanu
    [J]. Acta Mathematica Sinica, English Series, 2022, 38 : 2199 - 2219
  • [26] A threshold result for a non-local parabolic equation
    Wu, YH
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1997, 20 (11) : 933 - 943
  • [27] On the wave equation with a temporal non-local term
    Medjden, Mohamed
    Tatar, Nasser-Eddinne
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 665 - 671
  • [28] NON-LOCAL ANSATZE FOR THE DIRAC-EQUATION
    FUSHCHICH, WI
    ZHDANOV, RZ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (23): : L1117 - L1121
  • [29] A Two-Step Regularization Framework for Non-Local Means
    Zhong-Gui Sun
    Song-Can Chen
    Li-Shan Qiao
    [J]. Journal of Computer Science and Technology, 2014, 29 : 1026 - 1037
  • [30] A non-local perturbation of the logistic equation in RN
    Delgado, M.
    Molina-Becerra, M.
    Santos, J. R., Jr.
    Suarez, A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 147 - 158