HybridPose: 6D Object Pose Estimation under Hybrid Representations

被引:164
|
作者
Song, Chen [1 ]
Song, Jiaru [1 ]
Huang, Qixing [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
SYMMETRY;
D O I
10.1109/CVPR42600.2020.00051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce HybridPose, a novel 6D object pose estimation approach. HybridPose utilizes a hybrid intermediate representation to express different geometric information in the input image, including keypoints, edge vectors, and symmetry correspondences. Compared to a unitary representation, our hybrid representation allows pose regression to exploit more and diverse features when one type of predicted representation is inaccurate (e.g., because of occlusion). Different intermediate representations used by HybridPose can all be predicted by the same simple neural network, and outliers in predicted intermediate representations are filtered by a robust regression module. Compared to state-of-the-art pose estimation approaches, HybridPose is comparable in running time and is significantly more accurate. For example, on Occlusion Linemod [3] dataset, our method achieves a prediction speed of 30 fps with a mean ADD(-S) accuracy of 79.2%, representing a 67.4% improvement from the current state-of-the-art approach. The implementation of HybridPose is available at https://github.com/chensong1995/HybridPose.
引用
收藏
页码:428 / 437
页数:10
相关论文
共 50 条
  • [1] Hybrid 6D Object Pose Estimation from the RGB Image
    Staszak, Rafal
    Belter, Dominik
    [J]. ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 541 - 549
  • [2] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [3] Multiple geometry representations for 6D object pose estimation in occluded or truncated scenes
    Wang, Jichun
    Qiu, Lemiao
    Yi, Guodong
    Zhang, Shuyou
    Wang, Yang
    [J]. PATTERN RECOGNITION, 2022, 132
  • [4] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [5] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [6] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [7] FusionNet: An End-to-End Hybrid Model for 6D Object Pose Estimation
    Ye, Yuning
    Park, Hanhoon
    [J]. ELECTRONICS, 2023, 12 (19)
  • [8] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [9] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [10] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035