The structure of the minimum size supertail of a subspace partition

被引:2
|
作者
Nastase, Esmeralda [1 ]
Sissokho, Papa [2 ]
机构
[1] Xavier Univ, Dept Math, Cincinnati, OH 45207 USA
[2] Illinois State Univ, Dept Math, Normal, IL 61790 USA
关键词
Vector space partition; Subspace partition; Partial d-spread; FINITE VECTOR-SPACES;
D O I
10.1007/s10623-016-0237-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let denote the vector space of dimension n over the finite field with q elements. A subspace partition of V is a collection of nontrivial subspaces of V such that each nonzero vector of V is in exactly one subspace of . For any integer d, the d -supertail of is the set of subspaces in of dimension less than d, and it is denoted by ST. Let denote the minimum number of subspaces in any subspace partition of V in which the largest subspace has dimension t. It was shown by Heden et al. that , where t is the largest dimension of a subspace in ST. In this paper, we show that if , then the union of all the subspaces in ST constitutes a subspace under certain conditions.
引用
收藏
页码:549 / 563
页数:15
相关论文
共 50 条
  • [1] The structure of the minimum size supertail of a subspace partition
    Esmeralda Năstase
    Papa Sissokho
    [J]. Designs, Codes and Cryptography, 2017, 83 : 549 - 563
  • [2] The complete characterization of the minimum size supertail in a subspace partition
    Nastase, Esmeralda L.
    Sissokho, Papa A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 559 : 172 - 180
  • [3] The supertail of a subspace partition
    Heden, O.
    Lehmann, J.
    Nastase, E.
    Sissokho, P.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (03) : 305 - 316
  • [4] The supertail of a subspace partition
    O. Heden
    J. Lehmann
    E. Năstase
    P. Sissokho
    [J]. Designs, Codes and Cryptography, 2013, 69 : 305 - 316
  • [5] The minimum size of a finite subspace partition
    Nastase, Esmeralda L.
    Sissokho, Papa A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1213 - 1221
  • [6] On the type(s) of minimum size subspace partitions
    Heden, O.
    Lehmann, J.
    Nastase, E.
    Sissokho, P.
    [J]. DISCRETE MATHEMATICS, 2014, 332 : 1 - 9
  • [7] A MINIMUM PARTITION PROBLEM
    ZEITLIN, D
    KLAMKIN, MS
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (01): : 83 - &
  • [8] Partition level multiview subspace clustering
    Kang, Zhao
    Zhao, Xinjia
    Peng, Chong
    Zhu, Hongyuan
    Zhou, Joey Tianyi
    Peng, Xi
    Chen, Wenyu
    Xu, Zenglin
    [J]. NEURAL NETWORKS, 2020, 122 : 279 - 288
  • [9] The minimum volume of subspace trades
    Krotov, Denis S.
    [J]. DISCRETE MATHEMATICS, 2017, 340 (12) : 2723 - 2731
  • [10] Minimum Graph Partition with Basis
    Bin Quang Minh
    Toulouse, Michel
    [J]. SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 178 - 185