The minimum volume of subspace trades

被引:4
|
作者
Krotov, Denis S. [1 ]
机构
[1] Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 680090, Russia
基金
俄罗斯科学基金会;
关键词
Bitrades; Trades; Subspace designs; NULL DESIGNS;
D O I
10.1016/j.disc.2017.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subspace bitrade of type T-q(t, k, v) is a pair (T-0, T-1) of two disjoint nonempty collections of k-dimensional subspaces of a v-dimensional space V over the finite field of order q such that every t-dimensional subspace of V is covered by the same number of subspaces from T-0 and T-1. In a previous paper, the minimum cardinality of a subspace T-q(t, t + 1, v) bitrade was established. We generalize that result by showing that for admissible v, t, and k, the minimum cardinality of a subspace T-q(t, k, v) bitrade does not depend on k. An example of a minimum bitrade is represented using generator matrices in the reduced echelon form. For t = 1, the uniqueness of a minimum bitrade is proved. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2723 / 2731
页数:9
相关论文
共 50 条
  • [1] The minimum possible volume size of it μ-way (v, k, t) trades
    Golalizadeh, Somayyeh
    Soltankhah, Nasrin
    [J]. UTILITAS MATHEMATICA, 2019, 111 : 211 - 224
  • [2] The volume and foundation of star trades
    Lefevre, James G.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (11) : 2059 - 2066
  • [3] On the Volume of 4-Cycle Trades
    Darryn Bryant
    Mike Grannell
    Terry Griggs
    Barbara Maenhaut
    [J]. Graphs and Combinatorics, 2003, 19 : 53 - 63
  • [4] On the Volume of 5-Cycle Trades
    Barbara M. Maenhaut
    [J]. Graphs and Combinatorics, 2001, 17 : 315 - 328
  • [5] On the volume of 5-cycle trades
    Maenhaut, BM
    [J]. GRAPHS AND COMBINATORICS, 2001, 17 (02) : 315 - 328
  • [6] Duration, volume and volatility impact of trades
    Manganelli, S
    [J]. JOURNAL OF FINANCIAL MARKETS, 2005, 8 (04) : 377 - 399
  • [7] On the volume of 4-cycle trades
    Bryant, D
    Grannell, M
    Griggs, T
    Maenhaut, B
    [J]. GRAPHS AND COMBINATORICS, 2003, 19 (01) : 53 - 63
  • [8] The minimum size of a finite subspace partition
    Nastase, Esmeralda L.
    Sissokho, Papa A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1213 - 1221
  • [9] Minimum noise subspace: Concepts and applications
    Abed-Meraim, K
    Hua, Y
    Belouchrani, A
    [J]. ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 118 - 121
  • [10] ON THE POSSIBLE VOLUME OF μ-(v, k, t) TRADES
    Rashidi, S.
    Soltankhah, N.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (06): : 1387 - 1401