The minimum size of a finite subspace partition

被引:8
|
作者
Nastase, Esmeralda L. [2 ]
Sissokho, Papa A. [1 ]
机构
[1] Illinois State Univ, Dept Math, Normal, IL 61790 USA
[2] Xavier Univ, Dept Math, Cincinnati, OH 45207 USA
关键词
Subspace partition; Vector space partitions; Partial t-spreads; MAXIMAL PARTIAL SPREADS; VECTOR-SPACES; CONSTRUCTION;
D O I
10.1016/j.laa.2011.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subspace partition of P = PG(n, q) is a collection of subspaces of P whose pairwise intersection is empty. Let sigma(q)(n, t) denote the minimum size (i.e., minimum number of subspaces) in a subspace partition of P which the largest subspace has dimension t. In this paper, we determine the value of sigma(q)(n, t) for n <= 2t + 2. Moreover, we use the value of sigma(q)(2t + 2, t) to find the minimum size of a maximal partial t-spread in PG (3t + 2, q). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1213 / 1221
页数:9
相关论文
共 50 条
  • [1] The structure of the minimum size supertail of a subspace partition
    Esmeralda Năstase
    Papa Sissokho
    [J]. Designs, Codes and Cryptography, 2017, 83 : 549 - 563
  • [2] The structure of the minimum size supertail of a subspace partition
    Nastase, Esmeralda
    Sissokho, Papa
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (03) : 549 - 563
  • [3] The complete characterization of the minimum size supertail in a subspace partition
    Nastase, Esmeralda L.
    Sissokho, Papa A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 559 : 172 - 180
  • [4] On the type(s) of minimum size subspace partitions
    Heden, O.
    Lehmann, J.
    Nastase, E.
    Sissokho, P.
    [J]. DISCRETE MATHEMATICS, 2014, 332 : 1 - 9
  • [5] The supertail of a subspace partition
    Heden, O.
    Lehmann, J.
    Nastase, E.
    Sissokho, P.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (03) : 305 - 316
  • [6] The supertail of a subspace partition
    O. Heden
    J. Lehmann
    E. Năstase
    P. Sissokho
    [J]. Designs, Codes and Cryptography, 2013, 69 : 305 - 316
  • [7] Minimum cutsets for an element of a subspace lattice over a finite vector space
    Hong, F
    Jun, W
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1998, 14 (02): : 145 - 151
  • [8] Minimum Cutsets for an Element of a Subspace Lattice over a Finite Vector Space
    Feng H.
    Wang J.
    [J]. Order, 1997, 14 (2) : 145 - 151
  • [9] A finite partition in a dynamical system with entropy depending on the size
    Choda, M
    Takehana, H
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (04) : 309 - 315
  • [10] A Finite Partition in a Dynamical System with Entropy Depending on the Size
    Marie Choda
    Hiroaki Takehana
    [J]. Letters in Mathematical Physics, 1998, 44 : 309 - 315