The supertail of a subspace partition

被引:5
|
作者
Heden, O. [1 ]
Lehmann, J. [2 ]
Nastase, E. [3 ]
Sissokho, P. [4 ]
机构
[1] KTH, Dept Math, S-10044 Stockholm, Sweden
[2] Univ Bremen, MZH, Dept Math, D-28359 Bremen, Germany
[3] Xavier Univ, Dept Math & Comp Sci, Cincinnati, OH 45207 USA
[4] Illinois State Univ, Dept Math, Normal, IL 61790 USA
关键词
Finite vector space; Subspace partitions; VECTOR-SPACE;
D O I
10.1007/s10623-012-9664-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let V = V(n, q) be a vector space of dimension n over the finite field with q elements, and let d (1) < d (2) < ... < d (m) be the dimensions that occur in a subspace partition of V. Let sigma (q) (n, t) denote the minimum size of a subspace partition of V, in which t is the largest dimension of a subspace. For any integer s, with 1 < s a parts per thousand currency sign m, the set of subspaces in of dimension less than d (s) is called the s-supertail of . The main result is that the number of spaces in an s-supertail is at least sigma (q) (d (s) , d (s-1)).
引用
收藏
页码:305 / 316
页数:12
相关论文
共 50 条
  • [1] The supertail of a subspace partition
    O. Heden
    J. Lehmann
    E. Năstase
    P. Sissokho
    [J]. Designs, Codes and Cryptography, 2013, 69 : 305 - 316
  • [2] The structure of the minimum size supertail of a subspace partition
    Esmeralda Năstase
    Papa Sissokho
    [J]. Designs, Codes and Cryptography, 2017, 83 : 549 - 563
  • [3] The structure of the minimum size supertail of a subspace partition
    Nastase, Esmeralda
    Sissokho, Papa
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (03) : 549 - 563
  • [4] The complete characterization of the minimum size supertail in a subspace partition
    Nastase, Esmeralda L.
    Sissokho, Papa A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 559 : 172 - 180
  • [5] Partition level multiview subspace clustering
    Kang, Zhao
    Zhao, Xinjia
    Peng, Chong
    Zhu, Hongyuan
    Zhou, Joey Tianyi
    Peng, Xi
    Chen, Wenyu
    Xu, Zenglin
    [J]. NEURAL NETWORKS, 2020, 122 : 279 - 288
  • [6] The minimum size of a finite subspace partition
    Nastase, Esmeralda L.
    Sissokho, Papa A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1213 - 1221
  • [7] Subspace partition weighted sum filters for image restoration
    Lin, Y
    Hardie, RSC
    Barner, KE
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) : 613 - 616
  • [8] Dual-step subspace partition for process monitoring
    Song, Bing
    Shi, Hongbo
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4351 - 4356
  • [9] Subspace partition weighted sum filters for image deconvolution
    Lin, Y
    Hardie, RC
    Barner, KE
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 625 - 628
  • [10] Multi-view subspace clustering via partition fusion
    Lv, Juncheng
    Kang, Zhao
    Wang, Boyu
    Ji, Luping
    Xu, Zenglin
    [J]. INFORMATION SCIENCES, 2021, 560 : 410 - 423