Simplifying the interpretation of steroid metabolome data by a machine-learning approach

被引:0
|
作者
Kirkgoz, Tarik [1 ]
Kilic, Semih [2 ]
Abali, Zehra Yavas [1 ]
Yaman, Ali [3 ]
Kaygusuz, Sare Betul [1 ]
Eltan, Mehmet [1 ]
Turan, Serap [1 ]
Haklar, Goncagul [3 ]
Sagiroglu, Mahmut Samil [4 ]
Bereket, Abdullah [1 ]
Guran, Tulay [1 ]
机构
[1] Marmara Univ, Sch Med, Dept Pediat Endocrinol & Diabet, Istanbul, Turkey
[2] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[3] Marmara Univ, Sch Med, Dept Biochem, Istanbul, Turkey
[4] Genpute Computat Technol, Istanbul, Turkey
来源
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
P1-3
引用
收藏
页码:128 / 128
页数:1
相关论文
共 50 条
  • [31] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    [J]. MATHEMATICS, 2023, 11 (01)
  • [32] Machine-learning classifiers for imbalanced tornado data
    Trafalis T.B.
    Adrianto I.
    Richman M.B.
    Lakshmivarahan S.
    [J]. Computational Management Science, 2014, 11 (4) : 403 - 418
  • [33] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    [J]. 2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [34] Machine-learning techniques for macromolecular crystallization data
    Gopalakrishnan, V
    Livingston, G
    Hennessy, D
    Buchanan, B
    Rosenberg, JM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 1705 - 1716
  • [35] MULTIPHYSICS MISSING DATA SYNTHESIS (MiDaS): A MACHINE-LEARNING APPROACH FOR MITIGATING DATA GAPS & ARTIFACTS
    Steuben, J. C.
    Geltmacher, A. B.
    Rodriguez, S. N.
    Graber, B. D.
    Iliopoulos, A. P.
    Michopoulos, J. G.
    [J]. PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 2, 2023,
  • [36] Road-Deterioration Detection using Road Vibration Data with Machine-Learning Approach
    Takanashi, Masaki
    Ishii, Yoshinao
    Sato, Shu-ichi
    Sano, Noriyoshi
    Sanda, Katsushi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [37] A machine-learning approach to thunderstorm forecasting through post-processing of simulation data
    Vahid Yousefnia, Kianusch
    Boelle, Tobias
    Zoebisch, Isabella
    Gerz, Thomas
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024,
  • [38] Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach
    Bao, Yuequan
    Tang, Zhiyi
    Li, Hui
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (01): : 293 - 304
  • [39] Machine-learning approach for quantified resolvability enhancement of low-dose STEM data
    Gambini, Laura
    Mullarkey, Tiarnan
    Jones, Lewys
    Sanvito, Stefano
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):
  • [40] Complementing subjective with objective data in analysing expertise: A machine-learning approach applied to badminton
    Dieu, Olivier
    Schnitzler, Christophe
    Llena, Clement
    Potdevin, Francois
    [J]. JOURNAL OF SPORTS SCIENCES, 2020, 38 (17) : 1943 - 1952