Machine-learning approach for quantified resolvability enhancement of low-dose STEM data

被引:7
|
作者
Gambini, Laura [1 ]
Mullarkey, Tiarnan [1 ,2 ]
Jones, Lewys [1 ,2 ]
Sanvito, Stefano [1 ]
机构
[1] Trinity Coll Dublin, AMBER & CRANN Inst, Sch Phys, Dublin, Ireland
[2] Ctr Res Adapt Nanostruct & Nanodevices CRANN, Adv Microscopy Lab, Dublin, Ireland
来源
基金
欧洲研究理事会; 爱尔兰科学基金会; 英国工程与自然科学研究理事会;
关键词
scanning transmission electron microscope; image denoising; Poisson noise; autoencoder; NOISE;
D O I
10.1088/2632-2153/acbb52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-resolution electron microscopy is achievable only when a high electron dose is employed, a practice that may cause damage to the specimen and, in general, affects the observation. This drawback sets some limitations on the range of applications of high-resolution electron microscopy. Our work proposes a strategy, based on machine learning, which enables a significant improvement in the quality of Scanning Transmission Electron Microscope images generated at low electron dose, strongly affected by Poisson noise. In particular, we develop an autoencoder, trained on a large database of images, which is thoroughly tested on both synthetic and actual microscopy data. The algorithm is demonstrated to drastically reduce the noise level and approach ground-truth precision over a broad range of electron beam intensities. Importantly, it does not require human data pre-processing or the explicit knowledge of the dose level employed and can run at a speed compatible with live data acquisition. Furthermore, a quantitative unbiased benchmarking protocol is proposed to compare different denoising workflows.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine-Learning Approach to Analysis of Driving Simulation Data
    Yoshizawa, Akira
    Nishiyama, Hiroyuki
    Iwasaki, Hirotoshi
    Mizoguchi, Fumio
    [J]. 2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 398 - 402
  • [2] Drug repositioning: a machine-learning approach through data integration
    Francesco Napolitano
    Yan Zhao
    Vânia M Moreira
    Roberto Tagliaferri
    Juha Kere
    Mauro D’Amato
    Dario Greco
    [J]. Journal of Cheminformatics, 5
  • [3] Reconciling schemas of disparate data sources: A machine-learning approach
    Doan, AH
    Domingos, P
    Halevy, A
    [J]. SIGMOD RECORD, 2001, 30 (02) : 509 - 520
  • [4] Simplifying the interpretation of steroid metabolome data by a machine-learning approach
    Kirkgoz, Tarik
    Kilic, Semih
    Abali, Zehra Yavas
    Yaman, Ali
    Kaygusuz, Sare Betul
    Eltan, Mehmet
    Turan, Serap
    Haklar, Goncagul
    Sagiroglu, Mahmut Samil
    Bereket, Abdullah
    Guran, Tulay
    [J]. HORMONE RESEARCH IN PAEDIATRICS, 2019, 91 : 128 - 128
  • [5] Drug repositioning: a machine-learning approach through data integration
    Napolitano, Francesco
    Zhao, Yan
    Moreira, Vania M.
    Tagliaferri, Roberto
    Kere, Juha
    D'Amato, Mauro
    Greco, Dario
    [J]. JOURNAL OF CHEMINFORMATICS, 2013, 5
  • [6] A hybrid machine-learning approach for segmentation of protein localization data
    Kasson, PM
    Huppa, JB
    Davis, MM
    Brunger, AT
    [J]. BIOINFORMATICS, 2005, 21 (19) : 3778 - 3786
  • [7] A sub-sampled approach to extremely low-dose STEM
    Stevens, A.
    Luzi, L.
    Yang, H.
    Kovarik, L.
    Mehdi, B. L.
    Liyu, A.
    Gehm, M. E.
    Browning, N. D.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (04)
  • [8] A Machine-Learning Approach to Time Discrimination
    Hansen, Peter
    [J]. 2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2132 - 2133
  • [9] A machine-learning approach to automatic detection of delimiters in tabular data files
    Saurav, Shitesh
    Schwarz, Peter
    [J]. PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, : 1501 - 1503
  • [10] Theory Identity: A Machine-Learning Approach
    Larsen, Kai R.
    Hovorka, Dirk
    West, Jevin
    Birt, James
    Pfaff, James R.
    Chambers, Trevor W.
    Sampedro, Zebula R.
    Zager, Nick
    Vanstone, Bruce
    [J]. 2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 4639 - 4648