Machine-learning approach for quantified resolvability enhancement of low-dose STEM data

被引:7
|
作者
Gambini, Laura [1 ]
Mullarkey, Tiarnan [1 ,2 ]
Jones, Lewys [1 ,2 ]
Sanvito, Stefano [1 ]
机构
[1] Trinity Coll Dublin, AMBER & CRANN Inst, Sch Phys, Dublin, Ireland
[2] Ctr Res Adapt Nanostruct & Nanodevices CRANN, Adv Microscopy Lab, Dublin, Ireland
来源
基金
爱尔兰科学基金会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
scanning transmission electron microscope; image denoising; Poisson noise; autoencoder; NOISE;
D O I
10.1088/2632-2153/acbb52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-resolution electron microscopy is achievable only when a high electron dose is employed, a practice that may cause damage to the specimen and, in general, affects the observation. This drawback sets some limitations on the range of applications of high-resolution electron microscopy. Our work proposes a strategy, based on machine learning, which enables a significant improvement in the quality of Scanning Transmission Electron Microscope images generated at low electron dose, strongly affected by Poisson noise. In particular, we develop an autoencoder, trained on a large database of images, which is thoroughly tested on both synthetic and actual microscopy data. The algorithm is demonstrated to drastically reduce the noise level and approach ground-truth precision over a broad range of electron beam intensities. Importantly, it does not require human data pre-processing or the explicit knowledge of the dose level employed and can run at a speed compatible with live data acquisition. Furthermore, a quantitative unbiased benchmarking protocol is proposed to compare different denoising workflows.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Machine-Learning Metacomputing for Materials Science Data
    Steuben, J.C.
    Geltmacher, A.B.
    Rodriguez, S.N.
    Birnbaum, A.J.
    Graber, B.D.
    Rawlings, A.K.
    Iliopoulos, A.P.
    Michopoulos, J.G.
    Journal of Computing and Information Science in Engineering, 2024, 24 (11)
  • [42] MULTIPHYSICS MISSING DATA SYNTHESIS (MiDaS): A MACHINE-LEARNING APPROACH FOR MITIGATING DATA GAPS & ARTIFACTS
    Steuben, J. C.
    Geltmacher, A. B.
    Rodriguez, S. N.
    Graber, B. D.
    Iliopoulos, A. P.
    Michopoulos, J. G.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 2, 2023,
  • [43] Comparison of deep-learning and radiomics-based machine-learning methods for the identification of chronic obstructive pulmonary disease on low-dose computed tomography images
    Guan, Yu
    Zhang, Di
    Zhou, Xiuxiu
    Xia, Yi
    Lu, Yang
    Zheng, Xuebin
    He, Chuan
    Liu, Shiyuan
    Fan, Li
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (03) : 2485 - 2498
  • [44] MICRODOSIMETRIC APPROACH TO THE ANALYSIS OF CELL RESPONSES AT LOW-DOSE AND LOW-DOSE RATE
    FEINENDEGEN, LE
    BOOZ, J
    BOND, VP
    SONDHAUS, CA
    RADIATION PROTECTION DOSIMETRY, 1985, 13 (1-4) : 299 - 306
  • [45] A pilot study using a machine-learning approach of morphological and hemodynamic parameters for predicting aneurysms enhancement
    Lv, Nan
    Karmonik, Christof
    Shi, Zhaoyue
    Chen, Shiyue
    Wang, Xinrui
    Liu, Jianmin
    Huang, Qinghai
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (08) : 1313 - 1321
  • [46] A pilot study using a machine-learning approach of morphological and hemodynamic parameters for predicting aneurysms enhancement
    Nan Lv
    Christof Karmonik
    Zhaoyue Shi
    Shiyue Chen
    Xinrui Wang
    Jianmin Liu
    Qinghai Huang
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 1313 - 1321
  • [47] Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT
    Sharma, Vatsala
    Awate, Suyash P.
    MEDICAL IMAGE ANALYSIS, 2024, 97
  • [48] LSO-080 Machine-learning approach on lupus low disease activity prediction
    Faelnar, Nick
    Tee, Michael
    Tee, Cherica
    Caro, Jaime
    Solano, Geoffrey
    Kandane-Rathnayake, Rangi
    Magbitang-Santiago, Angelene Therese
    Salido, Evelyn
    Golder, Vera
    Louthrenoo, Worawit
    Chen, Yi-Hsing
    Cho, Jiacai
    Lateef, Aisha
    Hamijoyo, Laniyati
    Luo, Shue-Fen
    Wu, Yeong-Jian J.
    Navarra, Sandra
    Zamora, Leonid
    Li, Zhanguo
    Sockalingam, Sargunan
    Katsumata, Yasuhiro
    Harigai, Masayoshi
    Hao, Yanjie
    Zhang, Zhuoli
    Basnayake, B. M. D. B.
    Chann, Madelynn
    Kikuchi, Jun
    Takeuchi, Tsutomu
    Bae, Sang-Cheol
    Oon, Shereen
    O'Neill, Sean
    Goldblatt, Fiona
    Ng, Kristine
    Law, Annie
    Tugnet, Nicola
    Kumar, Sunil
    Ohkubo, Naoaki
    Tanaka, Yoshiya
    Lau, Chak Sing
    Nikpour, Mandana
    Hoi, Alberta
    Morand, Eric
    LUPUS SCIENCE & MEDICINE, 2023, 10 (SUPPL_1): : A84 - A84
  • [49] A MACHINE-LEARNING APPROACH FOR WORKFLOW IDENTIFICATION FROM LOW-LEVEL MONITORING INFORMATION
    Stein, Thorsten
    Stynes, Jeanne
    Kroeger, Reinhold
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INTERNET TECHNOLOGIES AND APPLICATIONS (ITA 11), 2011, : 62 - 69
  • [50] Road-Deterioration Detection using Road Vibration Data with Machine-Learning Approach
    Takanashi, Masaki
    Ishii, Yoshinao
    Sato, Shu-ichi
    Sano, Noriyoshi
    Sanda, Katsushi
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,