A Comparative Study of CNN and FCN for Histopathology Whole Slide Image Analysis

被引:1
|
作者
Sun, Shujiao [1 ,2 ]
Jiang, Bonan [3 ]
Zheng, Yushan [1 ,2 ]
Xie, Fengying [1 ,2 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[3] Beijing Univ Technol, Beijing Doblin Int Coll, Beijing 100124, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Image segmentation; Computational pathology; CNN; FCN; Lung cancer;
D O I
10.1007/978-3-030-34110-7_47
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic analysis of histopathological whole slide images (WSIs) is a challenging task. In this paper, we designed two deep learning structures based on a fully convolutional network (FCN) and a convolutional neural network (CNN), to achieve the segmentation of carcinoma regions from WSIs. FCN is developed for segmentation problems and CNN focuses on classification. We designed experiments to compare the performances of the two methods. The results demonstrated that CNN performs as well as FCN when applied to WSIs in high resolution. Furthermore, to leverage the advantages of CNN and FCN, we integrate the two methods to obtain a complete framework for lung cancer segmentation. The proposed methods were evaluated on the ACDC-LungHP dataset. The final dice coefficient for cancerous region segmentation is 0.770.
引用
收藏
页码:558 / 567
页数:10
相关论文
共 50 条
  • [41] Beyond Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning
    Xie, Chensu
    Muhammad, Hassan
    Vanderbilt, Chad M.
    Caso, Raul
    Yarlagadda, Dig Vijay Kumar
    Campanella, Gabriele
    Fuchs, Thomas J.
    [J]. MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 843 - 856
  • [42] Automated whole slide image analysis for a translational quantification of liver fibrosis
    Cindy Serdjebi
    Karine Bertotti
    Pinzhu Huang
    Guangyan Wei
    Disha Skelton-Badlani
    Isabelle A. Leclercq
    Damien Barbes
    Bastien Lepoivre
    Yury V. Popov
    Yvon Julé
    [J]. Scientific Reports, 12
  • [43] Automated whole slide image analysis for a translational quantification of liver fibrosis
    Serdjebi, Cindy
    Bertotti, Karine
    Huang, Pinzhu
    Wei, Guangyan
    Skelton-Badlani, Disha
    Leclercq, Isabelle A.
    Barbes, Damien
    Lepoivre, Bastien
    Popov, Yury, V
    Jule, Yvon
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [44] Refinement of Automated Whole Slide Image Analysis in Pediatric Heart Transplants
    Bhatia, A. K.
    Tong, L.
    Hoffman, R.
    Wu, P.
    Hassanzadeh, H. R.
    Wang, M. D.
    Deshpande, S. R.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2017, 36 (04): : S103 - S104
  • [45] Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology
    Balasubramanian, Aadhi Aadhavan
    Al-Heejawi, Salah Mohammed Awad
    Singh, Akarsh
    Breggia, Anne
    Ahmad, Bilal
    Christman, Robert
    Ryan, Stephen T.
    Amal, Saeed
    [J]. CANCERS, 2024, 16 (12)
  • [46] INTERACTIVE SEGMENTATION RELABELING FOR CLASSIFICATION OF WHOLE-SLIDE HISTOPATHOLOGY IMAGERY
    Haridas, Anoop
    Bunyak, Filiz
    Palaniappan, Kannappan
    [J]. 2015 IEEE 28TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2015, : 84 - 87
  • [47] Automatic Multi-Stain Registration of Whole Slide Images in Histopathology
    Shafique, Abubakr
    Babaie, Morteza
    Sajadi, Mahjabin
    Batten, Adrian
    Skdar, Soma
    Tizhoosh, H. R.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3622 - 3625
  • [48] Machine learning for glioblastoma screening from histopathology whole slide imaging
    Cheung, E. Y. W.
    Chu, E. S. M.
    Li, A. S. M.
    Tang, F.
    Wu, R. W.
    [J]. ANNALS OF ONCOLOGY, 2022, 33 : S1602 - S1602
  • [49] Patch Transformer for Multi-tagging Whole Slide Histopathology Images
    Li, Weijian
    Viet-Duy Nguyen
    Liao, Haofu
    Wilder, Matt
    Cheng, Ke
    Luo, Jiebo
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 532 - 540
  • [50] Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett's Esophagus
    Sali, Rasoul
    Moradinasab, Nazanin
    Guleria, Shan
    Ehsan, Lubaina
    Fernandes, Philip
    Shah, Tilak U.
    Syed, Sana
    Brown, Donald E.
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 16