A Comparative Study of CNN and FCN for Histopathology Whole Slide Image Analysis

被引:1
|
作者
Sun, Shujiao [1 ,2 ]
Jiang, Bonan [3 ]
Zheng, Yushan [1 ,2 ]
Xie, Fengying [1 ,2 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[3] Beijing Univ Technol, Beijing Doblin Int Coll, Beijing 100124, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Image segmentation; Computational pathology; CNN; FCN; Lung cancer;
D O I
10.1007/978-3-030-34110-7_47
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic analysis of histopathological whole slide images (WSIs) is a challenging task. In this paper, we designed two deep learning structures based on a fully convolutional network (FCN) and a convolutional neural network (CNN), to achieve the segmentation of carcinoma regions from WSIs. FCN is developed for segmentation problems and CNN focuses on classification. We designed experiments to compare the performances of the two methods. The results demonstrated that CNN performs as well as FCN when applied to WSIs in high resolution. Furthermore, to leverage the advantages of CNN and FCN, we integrate the two methods to obtain a complete framework for lung cancer segmentation. The proposed methods were evaluated on the ACDC-LungHP dataset. The final dice coefficient for cancerous region segmentation is 0.770.
引用
收藏
页码:558 / 567
页数:10
相关论文
共 50 条
  • [31] From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification
    Zhang, Yifan
    Chen, Hanbo
    Wei, Ying
    Zhao, Peilin
    Cao, Jiezhang
    Fan, Xinjuan
    Lou, Xiaoying
    Liu, Hailing
    Hou, Jinlong
    Han, Xiao
    Yao, Jianhua
    Wu, Qingyao
    Tan, Mingkui
    Huang, Junzhou
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 360 - 368
  • [32] INK REMOVAL FROM HISTOPATHOLOGY WHOLE SLIDE IMAGES BY COMBINING CLASSIFICATION, DETECTION AND IMAGE GENERATION MODELS
    Ali, Sharib
    Alham, Nasullah Khalid
    Verrill, Clare
    Rinscher, Jens
    [J]. 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 928 - 932
  • [33] CANCER SENSITIVE CASCADED NETWORKS (CSC-NET) FOR EFFICIENT HISTOPATHOLOGY WHOLE SLIDE IMAGE SEGMENTATION
    Sun, Shujiao
    Yuan, Huining
    Zheng, Yushan
    Zhang, Haopeng
    Jiang, Zhiguo
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 476 - 480
  • [34] Transfer Learning Approach for Classification of Histopathology Whole Slide Images
    Ahmed, Shakil
    Shaikh, Asadullah
    Alshahrani, Hani
    Alghamdi, Abdullah
    Alrizq, Mesfer
    Baber, Junaid
    Bakhtyar, Maheen
    [J]. SENSORS, 2021, 21 (16)
  • [35] Slide-Specific Models for Segmentation of Differently Stained Digital Histopathology Whole Slide Images
    Brieu, Nicolas
    Pauly, Olivier
    Zimmermann, Johannes
    Binnig, Gerd
    Schmidt, Guenter
    [J]. MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [36] Original Research Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification
    Hoehn, Julia
    Krieghoff-Henning, Eva
    Jutzi, Tanja B.
    von Kalle, Christof
    Utikal, Jochen S.
    Meier, Friedegund
    Gellrich, Frank F.
    Hobelsberger, Sarah
    Hauschild, Axel
    Schlager, Justin G.
    French, Lars
    Heinzerling, Lucie
    Schlaak, Max
    Ghoreschi, Kamran
    Hilke, Franz J.
    Poch, Gabriela
    Kutzner, Heinz
    Heppt, Markus, V
    Haferkamp, Sebastian
    Sondermann, Wiebke
    Schadendorf, Dirk
    Schilling, Bastian
    Goebeler, Matthias
    Hekler, Achim
    Froehling, Stefan
    Lipka, Daniel B.
    Kather, Jakob N.
    Krahl, Dieter
    Ferrara, Gerardo
    Haggenmueller, Sarah
    Brinker, Titus J.
    [J]. EUROPEAN JOURNAL OF CANCER, 2021, 149 : 94 - 101
  • [37] An Accurate Neural Network for Cytologic Whole-Slide Image Analysis
    Deng, Junwei
    Lu, Yizhou
    Ke, Jing
    [J]. PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCIENCE WEEK MULTICONFERENCE (ACSW 2020), 2020,
  • [38] Whole slide image analysis quantification in a mouse lung metastasis model
    Sandusky, George E.
    Surface, Ronne
    Tonsing-Carter, Eva
    Silver, Jayne
    Sinn, Tony
    Pollok, Karen
    [J]. CANCER RESEARCH, 2014, 74 (19)
  • [39] Cloud-Based Whole Slide Image Analysis Using MapReduce
    Vo, Hoang
    Kong, Jun
    Teng, Dejun
    Liang, Yanhui
    Aji, Ablimit
    Teodoro, George
    Wang, Fusheng
    [J]. DATA MANAGEMENT AND ANALYTICS FOR MEDICINE AND HEALTHCARE, 2017, 10186 : 62 - 77
  • [40] Development of an online image analysis platform for digital whole slide specimen
    Lundin, J.
    Konsti, J.
    Lundin, M.
    [J]. VIRCHOWS ARCHIV, 2009, 455 : 35 - 36