A Comparative Study of CNN and FCN for Histopathology Whole Slide Image Analysis

被引:1
|
作者
Sun, Shujiao [1 ,2 ]
Jiang, Bonan [3 ]
Zheng, Yushan [1 ,2 ]
Xie, Fengying [1 ,2 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[3] Beijing Univ Technol, Beijing Doblin Int Coll, Beijing 100124, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Image segmentation; Computational pathology; CNN; FCN; Lung cancer;
D O I
10.1007/978-3-030-34110-7_47
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic analysis of histopathological whole slide images (WSIs) is a challenging task. In this paper, we designed two deep learning structures based on a fully convolutional network (FCN) and a convolutional neural network (CNN), to achieve the segmentation of carcinoma regions from WSIs. FCN is developed for segmentation problems and CNN focuses on classification. We designed experiments to compare the performances of the two methods. The results demonstrated that CNN performs as well as FCN when applied to WSIs in high resolution. Furthermore, to leverage the advantages of CNN and FCN, we integrate the two methods to obtain a complete framework for lung cancer segmentation. The proposed methods were evaluated on the ACDC-LungHP dataset. The final dice coefficient for cancerous region segmentation is 0.770.
引用
收藏
页码:558 / 567
页数:10
相关论文
共 50 条
  • [21] Deep Learning for Whole Slide Image Analysis: An Overview
    Dimitriou, Neofytos
    Arandjelovic, Ognjen
    Caie, Peter D.
    [J]. FRONTIERS IN MEDICINE, 2019, 6
  • [22] Whole Slide Image Registration for the Study of Tumor Heterogeneity
    Solorzano, Leslie
    Almeida, Gabriela M.
    Mesquita, Barbara
    Martins, Diana
    Oliveira, Carla
    Wahlby, Carolina
    [J]. COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 95 - 102
  • [23] Anonymization of whole slide images in histopathology for research and education
    Bisson, Tom
    Franz, Michael
    Dogan, O. Isil
    Romberg, Daniel
    Jansen, Christoph
    Hufnagl, Peter
    Zerbe, Norman
    [J]. DIGITAL HEALTH, 2023, 9
  • [24] Federated learning with hyper-network—a case study on whole slide image analysis
    Yanfei Lin
    Haiyi Wang
    Weichen Li
    Jun Shen
    [J]. Scientific Reports, 13
  • [25] Federated learning with hyper-network-a case study on whole slide image analysis
    Lin, Yanfei
    Wang, Haiyi
    Li, Weichen
    Shen, Jun
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [26] A regularization term for slide correlation reduction in whole slide image analysis with deep learning
    Zhang, Hongrun
    Meng, Yanda
    Qian, Xuesheng
    Yang, Xiaoyun
    Coupland, Sarah E.
    Zheng, Yalin
    [J]. MEDICAL IMAGING WITH DEEP LEARNING, VOL 143, 2021, 143 : 812 - +
  • [27] Orbit Image Analysis: An open-source whole slide image analysis tool
    Stritt, Manuel
    Stalder, Anna K.
    Vezzali, Enrico
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (02)
  • [28] Accuracy of a remote quantitative image analysis in the whole slide images
    Janina Słodkowska
    Tomasz Markiewicz
    Bartłomiej Grala
    Wojciech Kozłowski
    Wielisław Papierz
    Katarzyna Pleskacz
    Piotr Murawski
    [J]. Diagnostic Pathology, 6
  • [29] Accuracy of a remote quantitative image analysis in the whole slide images
    Slodkowska, Janina
    Markiewicz, Tomasz
    Grala, Bartlomiej
    Kozlowski, Wojciech
    Papierz, Wielislaw
    Pleskacz, Katarzyna
    Murawski, Piotr
    [J]. DIAGNOSTIC PATHOLOGY, 2011, 6
  • [30] Lesion-Aware Contrastive Representation Learning for Histopathology Whole Slide Images Analysis
    Li, Jun
    Zheng, Yushan
    Wu, Kun
    Shi, Jun
    Xie, Fengying
    Jiang, Zhiguo
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 273 - 282