Space-Time Regularity for the Three Dimensional Navier-Stokes and MHD Equations

被引:0
|
作者
Zhu, Weipeng [1 ]
Zhao, Jihong [2 ,3 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
[3] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; MHD equations; Space-time regularity; Large initial components; GLOBAL WELLPOSED PROBLEM; WEAK SOLUTIONS; WELL-POSEDNESS; L2; DECAY; BEHAVIOR; SYSTEM; NORMS; KOCH;
D O I
10.1007/s10440-018-0218-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the space-time regularity of solutions to (1) the three dimensional incompressible Navier-Stokes equations for initial data u(0) = (u(0)(h), u(0)(3)) is an element of (B) over dot(p,r)(3/p-1) (R-3) with large initial vertical velocity component; and (2) the three dimensional incompressible magneto-hydrodynamic equations for initial datum u(0) = (u(0)(h), u(0)(3)) is an element of(B) over dot(p,r)(3/p-1)(R-3) with large initial vertical velocity component and b(0) = (b(0)(h), b(0)(3)) is an element of(B) over dot(p,r)(3/p-1)(R-3) with large initial vertical magnetic field component.
引用
收藏
页码:157 / 184
页数:28
相关论文
共 50 条
  • [31] Regularity of solutions to the Navier-Stokes equations
    Shananin, NA
    [J]. MATHEMATICAL NOTES, 1996, 59 (5-6) : 574 - 578
  • [32] Boundary partial regularity for the high dimensional Navier-Stokes equations
    Dong, Hongjie
    Gu, Xumin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (08) : 2606 - 2637
  • [33] On the regularity of solutions to the Navier-Stokes equations
    Lewalle, J
    [J]. IUTAM SYMPOSIUM ON REYNOLDS NUMBER SCALING IN TURBULENT FLOW, 2004, 74 : 241 - 244
  • [34] On regularity for the axisymmetric Navier-Stokes equations
    He, Fangyi
    Wei, Zhiqiang
    Zhu, Weiyi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1256 - 1265
  • [35] ON REGULARITY OF SOLUTIONS OF NAVIER-STOKES EQUATIONS
    DYER, RH
    EDMUNDS, DE
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (173P): : 93 - &
  • [36] Time and Space parallelization of the Navier-Stokes equations
    Albarreal Nunez, Isidoro I.
    Calzada Canalejo, M. Carmen
    Cruz Soto, Jose Luis
    Fernandez Cara, Enrique
    Galo Sanchez, Jose R.
    Marin Beltran, Mercedes
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2005, 24 (03): : 417 - 438
  • [37] A regularity criterion for the Navier-Stokes equations
    Bae, Hyeong-Ohk
    Choe, Hi Jun
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1173 - 1187
  • [38] On partial regularity for the Navier-Stokes equations
    Kukavica, Igor
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (03) : 717 - 728
  • [39] Stochastic Three-Dimensional Rotating Navier-Stokes Equations: Averaging, Convergence and Regularity
    Flandoli, Franco
    Mahalov, Alex
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (01) : 195 - 237
  • [40] On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations
    Ladyzhenskaya, O. A.
    Seregin, G. A.
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (04) : 356 - 387