On probability characteristics of "downfalls" in a standard Brownian motion

被引:0
|
作者
Douady, R
Shiryaev, AN
Yor, M
机构
[1] Univ Paris 06, Probabil Lab, F-75252 Paris 05, France
[2] RAN, VA Steklov Math Inst, Moscow 117966, Russia
关键词
Brownian motion; downfalls" and "range; Levy theorem; Brownian meander;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a Brownian motion B = (B-t)(t less than or equal to 1) with B-0 = 0, EBt = 0, EBt2 = t problems of probability distributions and their characteristics are considered for the variables [GRAPHICS] where sigma and sigma' are times (non-Markov) of the absolute maximum and absolute minimum of the Brownian motion on [0, 1] (i.e., B-sigma = sup(0 less than or equal to t less than or equal to 1) B-t, B-sigma' = info(0 less than or equal to t'less than or equal to 1) B-t').
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [1] Probability characteristics of downfalls of Brownian motion with drift
    Lobanov, S.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2006, 50 (03) : 489 - U14
  • [2] Relaxation of probability characteristics of the brownian motion of a nonlinear oscillator
    Muzychuk O.V.
    [J]. Radiophysics and Quantum Electronics, 2000, 43 (5) : 422 - 431
  • [3] Path probability for a Brownian motion
    PUJOS Cyril
    CALVAYRAC Florent
    WANG Qiuping Alexandre
    [J]. Science Bulletin, 2011, (34) : 3736 - 3740
  • [4] CONVERGENCE IN PROBABILITY TO BROWNIAN MOTION
    DROGIN, R
    [J]. ANNALS OF PROBABILITY, 1973, 1 (02): : 254 - 262
  • [5] Path probability for a Brownian motion
    Lin TongLing
    Pujos, Cyril
    Ou CongJie
    Bi WenPing
    Calvayrac, Florent
    Wang, Qiuping Alexandre
    [J]. CHINESE SCIENCE BULLETIN, 2011, 56 (34): : 3736 - 3740
  • [6] Probability characteristics of brownian motion in a stochastic potential profile of a specific type
    Muzychuk O.V.
    [J]. Radiophysics and Quantum Electronics, 1998, 41 (10) : 874 - 881
  • [7] Probability of Brownian motion hitting an obstacle
    Knessl, C
    Keller, JB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 729 - 745
  • [8] The Intersection Probability of Brownian Motion and SLEk
    Zhou, Shizhong
    Lan, Shiyi
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [9] Boundary crossing probability for Brownian motion
    Pötzelberger, K
    Wang, LQ
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) : 152 - 164
  • [10] The paradigm of complex probability and the Brownian motion
    Abou Jaoude, Abdo
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 478 - 503