Path probability for a Brownian motion

被引:0
|
作者
PUJOS Cyril [1 ]
CALVAYRAC Florent [2 ]
WANG Qiuping Alexandre [1 ,2 ]
机构
[1] LUNAM Université, ISMANS, Laboratoire de Physique Statistique et Systèmes Complexes
[2] LPEC, Université du Maine, Ave. O. Messiaen
关键词
classical Brownian motion; path probability; Lagrangian action; Hamiltonian action;
D O I
暂无
中图分类号
O552.1 [布朗运动];
学科分类号
0702 ;
摘要
This work reports on numerical simulations of Brownian motion in the non-dissipative limit. The objective was to prove the existence of path probability and to compute probability values for some sample paths. By simulating a large number of particles moving from point to point under Gaussian noise and conservative forces, we numerically determine that the path probability decreases exponentially with increasing Lagrangian action of the paths.
引用
收藏
页码:3736 / 3740
页数:5
相关论文
共 50 条
  • [1] Path probability for a Brownian motion
    Lin TongLing
    Pujos, Cyril
    Ou CongJie
    Bi WenPing
    Calvayrac, Florent
    Wang, Qiuping Alexandre
    [J]. CHINESE SCIENCE BULLETIN, 2011, 56 (34): : 3736 - 3740
  • [2] CONVERGENCE IN PROBABILITY TO BROWNIAN MOTION
    DROGIN, R
    [J]. ANNALS OF PROBABILITY, 1973, 1 (02): : 254 - 262
  • [3] Path Regularity of the Brownian Motion and the Brownian Sheet
    Kempka, H.
    Schneider, C.
    Vybiral, J.
    [J]. CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 485 - 539
  • [4] Path Regularity of the Brownian Motion and the Brownian Sheet
    H. Kempka
    C. Schneider
    J. Vybiral
    [J]. Constructive Approximation, 2024, 59 : 485 - 539
  • [5] A path transformation of Brownian motion
    Rajeev, Bhaskaran
    [J]. IN MEMORIAM PAUL-ANDRE MEYER: SEMINAIRE DE PROBABILITIES XXXIX, 2006, 1874 : 259 - 267
  • [6] Probability of Brownian motion hitting an obstacle
    Knessl, C
    Keller, JB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 729 - 745
  • [7] The Intersection Probability of Brownian Motion and SLEk
    Zhou, Shizhong
    Lan, Shiyi
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [8] Boundary crossing probability for Brownian motion
    Pötzelberger, K
    Wang, LQ
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) : 152 - 164
  • [9] The paradigm of complex probability and the Brownian motion
    Abou Jaoude, Abdo
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 478 - 503
  • [10] BROWNIAN-MOTION AND PROBABILITY AFTEREFFECTS
    LAVENDA, BH
    [J]. GAZZETTA CHIMICA ITALIANA, 1987, 117 (05): : 291 - 299