The Intersection Probability of Brownian Motion and SLEk

被引:0
|
作者
Zhou, Shizhong [1 ,2 ]
Lan, Shiyi [2 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Stat & Financial Math, Nanjing 210094, Jiangsu, Peoples R China
[2] Guangxi Univ Nationalities, Sch Sci, Nanning 530006, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
PLANE EXPONENTS; VALUES;
D O I
10.1155/2015/627423
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using excursion measure Poisson kernel method, we obtain a second-order differential equation of the intersection probability of Brownian motion and SLEk. Moreover, we find a transformation such that the second-order differential equation transforms into a hypergeometric differential equation. Then, by solving the hypergeometric differential equation, we obtain the explicit formula of the intersection probability for the trace of the chordal SLEk. and planar Brownian motion started from distinct points in an upper half-plane (H) over bar.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Intersection exponents for planar Brownian motion
    Lawler, GF
    Werner, W
    [J]. ANNALS OF PROBABILITY, 1999, 27 (04): : 1601 - 1642
  • [2] Path probability for a Brownian motion
    PUJOS Cyril
    CALVAYRAC Florent
    WANG Qiuping Alexandre
    [J]. Science Bulletin, 2011, (34) : 3736 - 3740
  • [3] CONVERGENCE IN PROBABILITY TO BROWNIAN MOTION
    DROGIN, R
    [J]. ANNALS OF PROBABILITY, 1973, 1 (02): : 254 - 262
  • [4] Path probability for a Brownian motion
    Lin TongLing
    Pujos, Cyril
    Ou CongJie
    Bi WenPing
    Calvayrac, Florent
    Wang, Qiuping Alexandre
    [J]. CHINESE SCIENCE BULLETIN, 2011, 56 (34): : 3736 - 3740
  • [5] Analyticity of intersection exponents for planar Brownian motion
    Lawler, GF
    Schramm, O
    Werner, W
    [J]. ACTA MATHEMATICA, 2002, 189 (02) : 179 - 201
  • [6] Multiple Intersection Exponents for Planar Brownian Motion
    Klenke, Achim
    Moerters, Peter
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (02) : 373 - 397
  • [7] Multiple Intersection Exponents for Planar Brownian Motion
    Achim Klenke
    Peter Mörters
    [J]. Journal of Statistical Physics, 2009, 136 : 373 - 397
  • [8] Probability of Brownian motion hitting an obstacle
    Knessl, C
    Keller, JB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 729 - 745
  • [9] Boundary crossing probability for Brownian motion
    Pötzelberger, K
    Wang, LQ
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) : 152 - 164
  • [10] The paradigm of complex probability and the Brownian motion
    Abou Jaoude, Abdo
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 478 - 503