On probability characteristics of "downfalls" in a standard Brownian motion

被引:0
|
作者
Douady, R
Shiryaev, AN
Yor, M
机构
[1] Univ Paris 06, Probabil Lab, F-75252 Paris 05, France
[2] RAN, VA Steklov Math Inst, Moscow 117966, Russia
关键词
Brownian motion; downfalls" and "range; Levy theorem; Brownian meander;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a Brownian motion B = (B-t)(t less than or equal to 1) with B-0 = 0, EBt = 0, EBt2 = t problems of probability distributions and their characteristics are considered for the variables [GRAPHICS] where sigma and sigma' are times (non-Markov) of the absolute maximum and absolute minimum of the Brownian motion on [0, 1] (i.e., B-sigma = sup(0 less than or equal to t less than or equal to 1) B-t, B-sigma' = info(0 less than or equal to t'less than or equal to 1) B-t').
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [41] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [42] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    [J]. Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [43] On a stochastic nonclassical diffusion equation with standard and fractional Brownian motion
    Caraballo, Tomas
    Tran Bao Ngoc
    Tran Ngoc Thach
    Nguyen Huy Tuan
    [J]. STOCHASTICS AND DYNAMICS, 2022, 22 (02)
  • [44] Survival Probability Dynamics of Scaled Brownian Motion: Effect of Nonstationary Property
    Lee, Hunki
    Song, Sanggeun
    Kim, Ji-Hyun
    Sung, Jaeyoung
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2019, 40 (09) : 847 - 850
  • [45] Exponential functionals of Brownian motion, I: Probability laws at fixed time
    Matsumoto, Hiroyuki
    [J]. PROBABILITY SURVEYS, 2005, 2 : 312 - 347
  • [46] Exponential Convergence in Probability for Empirical Means of Brownian Motion and of Random Walks
    Liming Wu
    [J]. Journal of Theoretical Probability, 1999, 12 : 661 - 673
  • [47] Dynamical phase transition in the first-passage probability of a Brownian motion
    Besga, B.
    Faisant, F.
    Petrosyan, A.
    Ciliberto, S.
    Majumdar, Satya N.
    [J]. PHYSICAL REVIEW E, 2021, 104 (01)
  • [48] MINIMIZING THE PROBABILITY OF RUIN WHEN CLAIMS FOLLOW BROWNIAN MOTION WITH DRIFT
    Promislow, S.
    Young, Virginia
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2005, 9 (03) : 109 - 128
  • [49] ON PROBABILITY LAWS OF SOLUTIONS TO DIFFERENTIAL SYSTEMS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
    Baudoin, F.
    Nualart, E.
    Ouyang, C.
    Tindel, S.
    [J]. ANNALS OF PROBABILITY, 2016, 44 (04): : 2554 - 2590
  • [50] Exponential convergence in probability for empirical means of Brownian motion and of random walks
    Wu, LM
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (03) : 661 - 673