SAMPLING, FEASIBILITY, AND PRIORS IN BAYESIAN ESTIMATION

被引:8
|
作者
Chorin, Alexandre J. [1 ,2 ]
Lu, Fei [1 ,2 ]
Miller, Robert N. [3 ]
Morzfeld, Matthias [4 ]
Tu, Xuemin [5 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[5] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Monte Carlo; data assimilation; model reduction; Bayesian estimation; DATA ASSIMILATION; PARTICLE FILTERS; PARAMETER-ESTIMATION;
D O I
10.3934/dcds.2016.8.4227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Importance sampling algorithms are discussed in detail, with an emphasis on implicit sampling, and applied to data assimilation via particle filters. Implicit sampling makes it possible to use the data to find high-probability samples at relatively low cost, making the assimilation more efficient. A new analysis of the feasibility of data assimilation is presented, showing in detail why feasibility depends on the Frobenius norm of the covariance matrix of the noise and not on the number of variables. A discussion of the convergence of particular particle filters follows. A major open problem in numerical data assimilation is the determination of appropriate priors; a progress report on recent work on this problem is given. The analysis highlights the need for a careful attention both to the data and to the physics in data assimilation problems.
引用
收藏
页码:4227 / 4246
页数:20
相关论文
共 50 条
  • [21] Bayesian Estimation with Informative Priors is Indistinguishable from Data Falsification
    Angel Garcia-Perez, Miguel
    [J]. SPANISH JOURNAL OF PSYCHOLOGY, 2019, 22
  • [22] Bayesian estimation of the parameters in safety and reliability models for the subjective priors
    Brandowski, A
    Grabski, F
    [J]. SAFETY AND RELIABILITY, VOLS 1 AND 2, 2003, : 255 - 260
  • [23] HYPERPARAMETERS ESTIMATION FOR THE BAYESIAN LOCALIZATION OF THE EEG SOURCES WITH TV PRIORS
    Lopez, Antonio
    Cortes, Jesus M.
    Lopez-Oller, Domingo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 489 - 493
  • [24] Bayesian estimation of incomplete data using conditionally specified priors
    Maria Sarabia, Jose
    Shahtahmassebi, Golnaz
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3419 - 3435
  • [25] Bayesian estimation of generalized exponential distribution under noninformative priors
    Moala, Fernando Antonio
    Achcar, Jorge Alberto
    Damasceno Tomazella, Vera Lucia
    [J]. XI BRAZILIAN MEETING ON BAYESIAN STATISTICS (EBEB 2012), 2012, 1490 : 230 - 242
  • [26] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [27] How to Choose Priors for Bayesian Estimation of the Discovery Process Model
    Jingzhen Xu
    Richard Sinding-Larsen
    [J]. Natural Resources Research, 2005, 14 (3) : 211 - 233
  • [28] Bayesian estimation of the generalized lognormal distribution using objective priors
    Li, Shengnan
    Wang, Min
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (07) : 1323 - 1341
  • [29] Bayesian estimation under informative sampling
    Savitsky, Terrance D.
    Toth, Daniell
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1677 - 1708
  • [30] A NON-BAYESIAN APPROACH TO ESTIMATION USING TESTED PRIORS
    GEORGE, VT
    KATTI, SK
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (05) : 1629 - 1639