Bayesian estimation of the generalized lognormal distribution using objective priors

被引:1
|
作者
Li, Shengnan [1 ]
Wang, Min [1 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Bayesian estimator; Gibbs sampler; maximum likelihood estimate; objective priors; posterior propriety; PROBABILITY MATCHING PRIORS;
D O I
10.1080/00949655.2016.1262864
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The generalized lognormal distribution plays an important role in analysing data from different life testing experiments. In this paper, we consider Bayesian analysis of this distribution using various objective priors for the model parameters. Specifically, we derive expressions for the Jeffreys-type priors, the reference priors with different group orderings of the parameters, and the first-order matching priors. We also study the properties of the posterior distributions of the parameters under these improper priors. It is shown that only two of them result in proper posterior distributions. Numerical simulation studies are conducted to compare the performances of the Bayesian estimators under the considered priors and the maximum likelihood estimates. Finally, a real-data application is also provided for illustrative purposes.
引用
收藏
页码:1323 / 1341
页数:19
相关论文
共 50 条
  • [1] Bayesian analysis of the inverse generalized gamma distribution using objective priors
    Ramos, Pedro L.
    Mota, Alex L.
    Ferreira, Paulo H.
    Ramos, Eduardo
    Tomazella, Vera L. D.
    Louzada, Francisco
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 786 - 816
  • [2] Bayesian estimation of generalized exponential distribution under noninformative priors
    Moala, Fernando Antonio
    Achcar, Jorge Alberto
    Damasceno Tomazella, Vera Lucia
    [J]. XI BRAZILIAN MEETING ON BAYESIAN STATISTICS (EBEB 2012), 2012, 1490 : 230 - 242
  • [3] Bayesian analysis of a generalized lognormal distribution
    Martin, J.
    Perez, C. J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 1377 - 1387
  • [4] Bayesian Estimation of Erlang Distribution under Different Generalized Truncated Distributions as Priors
    Khan, Adil H.
    Jan, T. R.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (02) : 416 - 442
  • [5] Bayesian estimation : Number of species from Poisson mixed exponential-gamma distribution using objective priors
    Kumar, Sandeep
    Pathak, Anurag
    Kumar, Manoj
    Singh, Sanjay Kumar
    [J]. JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2024, 27 (03) : 703 - 720
  • [6] Bayesian Estimation and Prediction for a Hybrid Censored Lognormal Distribution
    Singh, Sukhdev
    Tripathi, Yogesh Mani
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2016, 65 (02) : 782 - 795
  • [7] Bayesian analysis of the generalized gamma distribution using non-informative priors
    Ramos, Pedro L.
    Achcar, Jorge A.
    Moala, Fernando A.
    Ramos, Eduardo
    Louzada, Francisco
    [J]. STATISTICS, 2017, 51 (04) : 824 - 843
  • [8] Objective Priors for Estimation of Extended Exponential Geometric Distribution
    Ramos, Pedro L.
    Moala, Fernando A.
    Achcar, Jorge A.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2014, 13 (02) : 226 - 243
  • [9] Bayesian Analysis for the Generalized Lognormal Distribution Applied to Failure Time Analysis
    Hernandez, Freddy
    Cecilia Usuga, Olga
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2011, 34 (01): : 95 - 109
  • [10] BAYESIAN COMPRESSED SENSING USING GENERALIZED CAUCHY PRIORS
    Carrillo, Rafael E.
    Aysal, Tuncer C.
    Barner, Kenneth E.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4058 - 4061