Objective Priors for Estimation of Extended Exponential Geometric Distribution

被引:3
|
作者
Ramos, Pedro L. [1 ]
Moala, Fernando A. [2 ]
Achcar, Jorge A. [3 ]
机构
[1] Univ Sao Paulo, Fac Med Ribeirao Preto, Sao Paulo, Brazil
[2] Univ Estadual Paulista, Fac Sci & Technol, Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Math & Comp Sci, Sao Paulo, Brazil
关键词
Extended exponential geometric distribution; Jeffreys; MDIP; Reference; Bayesian; noninformative; prior;
D O I
10.22237/jmasm/1414815060
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Bayesian analysis was developed with different noninformative prior distributions such as Jeffreys, Maximal Data Information, and Reference. The aim was to investigate the effects of each prior distribution on the posterior estimates of the parameters of the extended exponential geometric distribution, based on simulated data and a real application.
引用
收藏
页码:226 / 243
页数:18
相关论文
共 50 条
  • [1] Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
    Louzada, Francisco
    Ramos, Pedro L.
    Perdona, Gleici S. C.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
  • [2] ROBUST ESTIMATION WITH GEOMETRIC DISTRIBUTION UNDER A CLASS OF PRIORS
    Kumar, Surendra
    Singh, Dhanpal
    Tyagi, Pradeep Kumar
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2019, 15 (01): : 433 - 438
  • [3] Bayesian estimation of generalized exponential distribution under noninformative priors
    Moala, Fernando Antonio
    Achcar, Jorge Alberto
    Damasceno Tomazella, Vera Lucia
    [J]. XI BRAZILIAN MEETING ON BAYESIAN STATISTICS (EBEB 2012), 2012, 1490 : 230 - 242
  • [4] Bayesian estimation : Number of species from Poisson mixed exponential-gamma distribution using objective priors
    Kumar, Sandeep
    Pathak, Anurag
    Kumar, Manoj
    Singh, Sanjay Kumar
    [J]. JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2024, 27 (03) : 703 - 720
  • [5] Linear estimation for the extended exponential power distribution
    Tumlinson, S. E.
    Keating, J. P.
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (07) : 1392 - 1403
  • [6] Bayesian estimation of the generalized lognormal distribution using objective priors
    Li, Shengnan
    Wang, Min
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (07) : 1323 - 1341
  • [7] The Efficiency of Ranked Set Sampling Design for Parameter Estimation for the Log-Extended Exponential–Geometric Distribution
    Rui Yang
    Wangxue Chen
    Dongsen Yao
    Chunxian Long
    Yanfei Dong
    Bingliang Shen
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 497 - 507
  • [8] The Efficiency of Ranked Set Sampling Design for Parameter Estimation for the Log-Extended Exponential-Geometric Distribution
    Yang, Rui
    Chen, Wangxue
    Yao, Dongsen
    Long, Chunxian
    Dong, Yanfei
    Shen, Bingliang
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02): : 497 - 507
  • [9] The geometric exponential Poisson distribution
    Nadarajah, Saralees
    Cancho, Vicente G.
    Ortega, Edwin M. M.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2013, 22 (03): : 355 - 380
  • [10] The geometric exponential Poisson distribution
    Saralees Nadarajah
    Vicente G. Cancho
    Edwin M. M. Ortega
    [J]. Statistical Methods & Applications, 2013, 22 : 355 - 380