AN APPLICATION OF SEQUENTIAL REGRESSION MULTIPLE IMPUTATION ON PANEL DATA

被引:0
|
作者
Von Maltitz, Michael Johan [1 ]
Van der Merwe, Abraham Johannes [1 ]
机构
[1] Univ Free State, ZA-9300 Bloemfontein, Free State, South Africa
关键词
C11; C02; C15; C16; D31; C23; D71; Sequential regression multiple imputation; SRMI; multiple imputation; panel data; household welfare; social capital; HOUSEHOLD WELFARE; MISSING DATA; POVERTY;
D O I
10.1111/j.1813-6982.2011.01270.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
The relatively new sequential regression multiple imputation (SRMI) method is introduced, with the process of SRMI laid out in detail. The Project for Statistics on Living Standards and Development and the follow-up KwaZulu-Natal Income Dynamics Study provide the real panel data on which the methods reviewed are applied. The SRMI process is used to create multiple datasets completed with values imputed for data originally missing, and using the error component model estimation procedures and Rubin's rules, inferences on the panel data are made. Conclusions are drawn as to the applicability of the SRMI process to these data and as to the results of the regression analyses completed.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [21] A multiple imputation approach to linear regression with clustered censored data
    Pan, W
    Connett, JE
    [J]. LIFETIME DATA ANALYSIS, 2001, 7 (02) : 111 - 123
  • [22] Multiple imputation in quantile regression
    Wei, Ying
    Ma, Yanyuan
    Carroll, Raymond J.
    [J]. BIOMETRIKA, 2012, 99 (02) : 423 - 438
  • [23] Bayesian Nonparametric Regression Modeling of Panel Data for Sequential Classification
    Xiong, Sihan
    Fu, Yiwei
    Ray, Asok
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) : 4128 - 4139
  • [24] Quantile Regression-Based Multiple Imputation of Missing Values - An Evaluation and Application to Corporal Punishment Data
    Kleinke, Kristian
    Fritsch, Markus
    Stemmler, Mark
    Reinecke, Jost
    Loesel, Friedrich
    [J]. METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2021, 17 (03) : 205 - 230
  • [25] Application of Multiple Imputation Method for Missing Data Estimation
    Ser, Gazel
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2012, 25 (04): : 869 - 873
  • [26] Composite Imputation Method for the Multiple Linear Regression with Missing at Random Data
    Thongsri, Thidarat
    Samart, Klairung
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 51 - 62
  • [27] Development of Imputation Methods for Missing Data in Multiple Linear Regression Analysis
    Thidarat Thongsri
    Klairung Samart
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 3390 - 3399
  • [28] Multiple imputation for competing risks regression with interval-censored data
    Delord, Marc
    Genin, Emmanuelle
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (11) : 2217 - 2228
  • [29] A multiple imputation approach to Cox regression with interval-censored data
    Pan, W
    [J]. BIOMETRICS, 2000, 56 (01) : 199 - 203
  • [30] Using multiple imputation to estimate missing data in meta-regression
    Ellington, E. Hance
    Bastille-Rousseau, Guillaume
    Austin, Cayla
    Landolt, Kristen N.
    Pond, Bruce A.
    Rees, Erin E.
    Robar, Nicholas
    Murray, Dennis L.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (02): : 153 - 163