Bayesian Nonparametric Regression Modeling of Panel Data for Sequential Classification

被引:2
|
作者
Xiong, Sihan [1 ]
Fu, Yiwei [1 ]
Ray, Asok [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
关键词
Bayes factor; Bayesian nonparametric; conditional tensor factorization; panel data; posterior consistency; regression model; thermoacoustic instability; MACHINE;
D O I
10.1109/TNNLS.2017.2752005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a Bayesian nonparametric regression model of panel data for sequential pattern classification. The proposed method provides a flexible and parsimonious model that allows both time-independent spatial variables and time-dependent exogenous variables to be predictors. Not only this method improves the accuracy of parameter estimation for limited data, but also it facilitates model interpretation by identifying statistically significant predictors with hypothesis testing. Moreover, as the data length approaches infinity, posterior consistency of the model is guaranteed for general data-generating processes under regular conditions. The resulting model of panel data can also be used for sequential classification. The proposed method has been tested by numerical simulation, then validated on an econometric public data set, and subsequently validated for detection of combustion instabilities with experimental data that have been generated in a laboratory environment.
引用
收藏
页码:4128 / 4139
页数:12
相关论文
共 50 条
  • [1] Bayesian Nonparametric ROC Regression Modeling
    Inacio de Carvalho, Vanda
    Jara, Alejandro
    Hanson, Timothy E.
    de Carvalho, Miguel
    [J]. BAYESIAN ANALYSIS, 2013, 8 (03): : 623 - 645
  • [2] Bayesian Nonparametric Modeling for Multivariate Ordinal Regression
    DeYoreo, Maria
    Kottas, Athanasios
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 71 - 84
  • [3] Bayesian nonparametric classification for spectroscopy data
    Gutierrez, Luis
    Gutierrez-Pena, Eduardo
    Mena, Ramses H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 78 : 56 - 68
  • [4] Bayesian time series regression with nonparametric modeling of autocorrelation
    Dey, Tanujit
    Kim, Kun Ho
    Lim, Chae Young
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1715 - 1731
  • [5] Bayesian time series regression with nonparametric modeling of autocorrelation
    Tanujit Dey
    Kun Ho Kim
    Chae Young Lim
    [J]. Computational Statistics, 2018, 33 : 1715 - 1731
  • [6] qgam: Bayesian Nonparametric Quantile Regression Modeling in R
    Fasiolo, Matteo
    Wood, Simon N.
    Zaffran, Margaux
    Nedellec, Raphael
    Goude, Yannig
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (09): : 1 - 31
  • [7] NONPARAMETRIC BAYESIAN SUPERVISED CLASSIFICATION OF FUNCTIONAL DATA
    Rabaoui, Asma
    Kadri, Hachem
    Davy, Manuel
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3381 - 3384
  • [8] A NONPARAMETRIC REGRESSION MODEL FOR PANEL COUNT DATA ANALYSIS
    Zhao, Huadong
    Zhang, Ying
    Zhao, Xingqiu
    Yu, Zhangsheng
    [J]. STATISTICA SINICA, 2019, 29 (02) : 809 - 826
  • [9] NONPARAMETRIC BAYESIAN REGRESSION
    BARRY, D
    [J]. ANNALS OF STATISTICS, 1986, 14 (03): : 934 - 953
  • [10] Nonparametric Bayesian Correlated Group Regression With Applications to Image Classification
    Luo, Lei
    Yang, Jian
    Zhang, Bob
    Jiang, Jielin
    Huang, Heng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5330 - 5344