Bayesian Nonparametric Modeling for Multivariate Ordinal Regression

被引:26
|
作者
DeYoreo, Maria [1 ]
Kottas, Athanasios [2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Dirichlet process mixture model; Kullback-Leibler condition; Markov chain Monte Carlo; Polychoric correlations; SAMPLING METHODS; DIRICHLET; INFERENCE; BINARY; LIKELIHOOD; MIXTURES; PRIORS;
D O I
10.1080/10618600.2017.1316280
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects that enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework enables highly flexible inference for ordinal regression relationships, avoiding assumptions of linearity or additivity in the covariate effects. In standard parametric ordinal regression models, computational challenges arise from identifiability constraints and estimation of parameters requiring nonstandard inferential techniques. A key feature of the nonparametric model is that it achieves inferential flexibility, while avoiding these difficulties. In particular, we establish full support of the nonparametric mixture model under fixed cut-off points that relate through discretization the latent continuous responses with the ordinal responses. The practical utility of the modeling approach is illustrated through application to two datasets from econometrics, an example involving regression relationships for ozone concentration, and a multirater agreement problem. Supplementary materials with technical details on theoretical results and on computation are available online.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 50 条
  • [1] Bayesian nonparametric multivariate ordinal regression
    Bao, Junshu
    Hanson, Timothy E.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 337 - 357
  • [2] Nonparametric Bayesian modeling for multivariate ordinal data
    Kottas, A
    Müller, P
    Quintana, F
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (03) : 610 - 625
  • [3] Bayesian Nonparametric ROC Regression Modeling
    Inacio de Carvalho, Vanda
    Jara, Alejandro
    Hanson, Timothy E.
    de Carvalho, Miguel
    [J]. BAYESIAN ANALYSIS, 2013, 8 (03): : 623 - 645
  • [4] Nonparametric regression with ordinal responses
    Gu, Chong
    [J]. STAT, 2021, 10 (01):
  • [5] Bayesian time series regression with nonparametric modeling of autocorrelation
    Dey, Tanujit
    Kim, Kun Ho
    Lim, Chae Young
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1715 - 1731
  • [6] Bayesian time series regression with nonparametric modeling of autocorrelation
    Tanujit Dey
    Kun Ho Kim
    Chae Young Lim
    [J]. Computational Statistics, 2018, 33 : 1715 - 1731
  • [7] qgam: Bayesian Nonparametric Quantile Regression Modeling in R
    Fasiolo, Matteo
    Wood, Simon N.
    Zaffran, Margaux
    Nedellec, Raphael
    Goude, Yannig
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (09): : 1 - 31
  • [8] NONPARAMETRIC BAYESIAN REGRESSION
    BARRY, D
    [J]. ANNALS OF STATISTICS, 1986, 14 (03): : 934 - 953
  • [9] Ordinal Regression with Sparse Bayesian
    Chang, Xiao
    Zheng, Qinghua
    Lin, Peng
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 591 - 599
  • [10] Bayesian hierarchical ordinal regression
    Paquet, U
    Holden, S
    Naish-Guzman, A
    [J]. ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 267 - 272