Multiple imputation in quantile regression

被引:67
|
作者
Wei, Ying [1 ]
Ma, Yanyuan [2 ]
Carroll, Raymond J. [2 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Missing data; Multiple imputation; Quantile regression; Regression quantile; Shrinkage estimation; LONGITUDINAL DATA; ESTIMATORS; MODELS;
D O I
10.1093/biomet/ass007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a multiple imputation estimator for parameter estimation in a quantile regression model when some covariates are missing at random. The estimation procedure fully utilizes the entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n consistent and asymptotically normal. To protect against possible model misspecification, we further propose a shrinkage estimator, which automatically adjusts for possible bias. The finite sample performance of our estimator is investigated in a simulation study. Finally, we apply our methodology to part of the Eating at American's Table Study data, investigating the association between two measures of dietary intake.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 50 条
  • [1] Multiple Imputation for Cure Rate Quantile Regression with Censored Data
    Wu, Yuanshan
    Yin, Guosheng
    [J]. BIOMETRICS, 2017, 73 (01) : 94 - 103
  • [2] miWQS: Multiple Imputation Using Weighted Quantile Sum Regression
    Hargarten, Paul M.
    Wheeler, David C.
    [J]. R JOURNAL, 2020, 12 (02): : 226 - 250
  • [3] A fast imputation algorithm in quantile regression
    Hao Cheng
    Ying Wei
    [J]. Computational Statistics, 2018, 33 : 1589 - 1603
  • [4] A fast imputation algorithm in quantile regression
    Cheng, Hao
    Wei, Ying
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1589 - 1603
  • [5] Imputation in nonparametric quantile regression with complex data
    Hu, Yanan
    Yang, Yaqi
    Wang, Chunyu
    Tian, Maozai
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 127 : 120 - 130
  • [7] Parameter estimation through semiparametric quantile regression imputation
    Chen, Senniang
    Yu, Cindy L.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3621 - 3647
  • [8] Quantile Regression Random Forest Hybrids based Data Imputation
    Yadav, Manish
    Ravi, Vadlamani
    [J]. PROCEEDINGS OF 2018 IEEE 17TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2018), 2018, : 195 - 201
  • [10] Quantile Regression-Based Multiple Imputation of Missing Values - An Evaluation and Application to Corporal Punishment Data
    Kleinke, Kristian
    Fritsch, Markus
    Stemmler, Mark
    Reinecke, Jost
    Loesel, Friedrich
    [J]. METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2021, 17 (03) : 205 - 230