Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods

被引:7
|
作者
Kawecki, Ellya L. [1 ,2 ]
机构
[1] UCL, Dept Math, London, England
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
英国工程与自然科学研究理事会;
关键词
discontinuous Galerkin; finite element method; numerical analysis; partial differential equations; INTERIOR PENALTY METHODS; BOUNDARY-VALUE-PROBLEMS; ELLIPTIC-EQUATIONS; OBSTACLE PROBLEM; APPROXIMATION; INTERPOLATION;
D O I
10.1002/num.22489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide key estimates used in the stability and error analysis of discontinuous Galerkin finite element methods (DGFEMs) on domains with curved boundaries. In particular, we review trace estimates, inverse estimates, discrete Poincare-Friedrichs' inequalities, and optimal interpolation estimates in noninteger Hilbert-Sobolev norms, that are well known in the case of polytopal domains. We also prove curvature bounds for curved simplices, which does not seem to be present in the existing literature, even in the polytopal setting, since polytopal domains have piecewise zero curvature. We demonstrate the value of these estimates, by analyzing the IPDG method for the Poisson problem, introduced by Douglas and Dupont, and by analyzing a variant of thehp-DGFEM for the biharmonic problem introduced by Mozolevski and Suli. In both cases we prove stability estimates and optimal a priori error estimates. Numerical results are provided, validating the proven error estimates.
引用
收藏
页码:1492 / 1536
页数:45
相关论文
共 50 条
  • [1] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [2] Stabilization mechanisms in discontinuous Galerkin finite element methods
    Brezzi, F.
    Cockburn, B.
    Marini, L. D.
    Suli, E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3293 - 3310
  • [3] Curved elements in weak Galerkin finite element methods
    Li, Dan
    Wang, Chunmei
    Wang, Junping
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 153 : 20 - 32
  • [4] Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains
    Antonietti, Paola F.
    Cangiani, Andrea
    Collis, Joe
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    Giani, Stefano
    Houston, Paul
    [J]. BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 281 - 310
  • [5] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    [J]. Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [6] Parallel iterative discontinuous Galerkin finite-element methods
    Aharoni, D
    Barak, A
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 247 - 254
  • [7] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [8] HpGEM - A software framework for discontinuous galerkin finite element methods
    Pesch, Lars
    Bell, Alexander
    Sollie, Henk
    Ambati, Vijaya R.
    Bokhove, Onno
    Van der Vegt, Jaap J. W.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):
  • [9] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NUMERICAL SIMULATIONS OF THERMOELASTICITY
    Hao, Zeng-rong
    Gu, Chun-wei
    Song, Yin
    [J]. JOURNAL OF THERMAL STRESSES, 2015, 38 (09) : 983 - 1004
  • [10] AUTOMATIC SYMBOLIC COMPUTATION FOR DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS
    Houston, Paul
    Sime, Nathan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : C327 - C357