Stabilization mechanisms in discontinuous Galerkin finite element methods

被引:106
|
作者
Brezzi, F.
Cockburn, B.
Marini, L. D.
Suli, E.
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[4] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
discontinuous Galerkin methods; stabilization mechanisms;
D O I
10.1016/j.cma.2005.06.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we propose a new general framework for the construction and the analysis of discontinuous Galerkin (DG) methods which reveals a basic mechanism, responsible for certain distinctive stability properties of DG methods. We show that this mechanism is common to apparently unrelated stabilizations, including jump penalty, upwinding, and Hughes-Franca type residual-based stabilizations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3293 / 3310
页数:18
相关论文
共 50 条
  • [1] Minimal stabilization for discontinuous galerkin finite element methods for hyperbolic problems
    Burman, E.
    Stamm, B.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (02) : 183 - 208
  • [2] Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems
    E. Burman
    B. Stamm
    [J]. Journal of Scientific Computing, 2007, 33 : 183 - 208
  • [3] hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization
    Paul Houston
    Max Jensen
    Endre Süli
    [J]. Journal of Scientific Computing, 2002, 17 : 3 - 25
  • [4] hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization
    Houston, Paul
    Jensen, Max
    Sueli, Endre
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 3 - 25
  • [5] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [6] Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods
    Kawecki, Ellya L.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1492 - 1536
  • [7] A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods
    Lin, Guang
    Liu, Jiangguo
    Sadre-Marandi, Farrah
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 346 - 362
  • [8] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    [J]. Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [9] Parallel iterative discontinuous Galerkin finite-element methods
    Aharoni, D
    Barak, A
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 247 - 254
  • [10] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NUMERICAL SIMULATIONS OF THERMOELASTICITY
    Hao, Zeng-rong
    Gu, Chun-wei
    Song, Yin
    [J]. JOURNAL OF THERMAL STRESSES, 2015, 38 (09) : 983 - 1004