COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS

被引:8
|
作者
Of, G. [1 ]
Rodin, G. J. [2 ]
Steinbach, O. [1 ]
Taus, M. [2 ]
机构
[1] Graz Univ Technol, Inst Numer Math, A-8010 Graz, Austria
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2012年 / 34卷 / 03期
基金
奥地利科学基金会;
关键词
discontinuous Galerkin finite element methods; boundary element methods; coupling; EQUATION;
D O I
10.1137/110848530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents three new coupling methods for interior penalty discontinuous Galerkin finite element methods and boundary element methods. The new methods allow one to use discontinuous basis functions on the interface between the subdomains represented by the finite element and boundary element methods. This feature is particularly important when discontinuous Galerkin finite element methods are used. Error and stability analysis is presented for one of the methods. Numerical examples suggest that all three methods exhibit very similar convergence properties, consistent with available theoretical results.
引用
收藏
页码:A1659 / A1677
页数:19
相关论文
共 50 条
  • [1] A DIRECT COUPLING OF LOCAL DISCONTINUOUS GALERKIN AND BOUNDARY ELEMENT METHODS
    Gatica, Gabriel N.
    Heuer, Norbert
    Javier Sayas, Francisco
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1369 - 1394
  • [2] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    [J]. Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [3] A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity
    Phillip Joseph Phillips
    Mary F. Wheeler
    [J]. Computational Geosciences, 2008, 12 : 417 - 435
  • [4] A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity
    Phillips, Phillip Joseph
    Wheeler, Mary F.
    [J]. COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 417 - 435
  • [5] Discontinuous Deformation Analysis Coupling with Discontinuous Galerkin Finite Element Methods for Contact Simulations
    Sun, Yue
    Feng, Xiangchu
    Xiao, Jun
    Wang, Ying
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [6] An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods
    Gatica, Gabriel N.
    Sayas, Francisco-Javier
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1675 - 1696
  • [7] Stabilization mechanisms in discontinuous Galerkin finite element methods
    Brezzi, F.
    Cockburn, B.
    Marini, L. D.
    Suli, E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3293 - 3310
  • [8] Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods
    Kawecki, Ellya L.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1492 - 1536
  • [9] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Erath, Christoph
    Mascotto, Lorenzo
    Melenk, Jens M.
    Perugia, Ilaria
    Rieder, Alexander
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [10] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Christoph Erath
    Lorenzo Mascotto
    Jens M. Melenk
    Ilaria Perugia
    Alexander Rieder
    [J]. Journal of Scientific Computing, 2022, 92