Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation

被引:0
|
作者
Christoph Erath
Lorenzo Mascotto
Jens M. Melenk
Ilaria Perugia
Alexander Rieder
机构
[1] University College of Teacher Education Vorarlberg,Dipartimento di Matematica e Applicazioni
[2] Università di Milano Bicocca,Fakultät für Mathematik
[3] Universität Wien,Institut für Analysis und Scientific Computing
[4] IMATI-CNR,undefined
[5] TU Wien,undefined
来源
关键词
Discontinuous Galerkin method; Boundary element method; Mortar coupling; Helmholtz equation; Variable sound speed;
D O I
暂无
中图分类号
学科分类号
摘要
We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is related to an impedance trace on a smooth interface. The method obtained has a block structure with nonsingular subblocks. We prove quasi-optimality of the h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}- and p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-versions of the scheme, under a threshold condition on the approximability properties of the discrete spaces. Amongst others, an essential tool in the analysis is a novel discontinuous-to-continuous reconstruction operator on tetrahedral meshes with curved faces.
引用
收藏
相关论文
共 50 条
  • [1] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Erath, Christoph
    Mascotto, Lorenzo
    Melenk, Jens M.
    Perugia, Ilaria
    Rieder, Alexander
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [2] hp-DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER
    Feng, Xiaobing
    Wu, Haijun
    [J]. MATHEMATICS OF COMPUTATION, 2011, 80 (276) : 1997 - 2024
  • [3] ROBUST ADAPTIVE hp DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR THE HELMHOLTZ EQUATION
    Congreve, Scott
    Gedicke, Joscha
    Perugia, Ilaria
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A1121 - A1147
  • [4] hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    [J]. Numerische Mathematik, 2008, 109 : 233 - 268
  • [5] A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods
    Antonietti, Paola F.
    Houston, Paul
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) : 124 - 149
  • [6] hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    [J]. NUMERISCHE MATHEMATIK, 2008, 109 (02) : 233 - 268
  • [7] hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization
    Houston, Paul
    Jensen, Max
    Sueli, Endre
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 3 - 25
  • [8] Mixed hp-discontinuous Galerkin finite element methods for the stokes problem in polygons
    Houston, P
    Schötzau, D
    Wihler, TP
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 493 - 501
  • [9] hp-DISCONTINUOUS GALERKIN METHODS FOR THE LOTKA-MCKENDRICK EQUATION: A NUMERICAL STUDY
    Jeong, Shin-Ja
    Kim, Mi-Young
    Selenge, Tsendanysh
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (04): : 623 - 640
  • [10] hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization
    Paul Houston
    Max Jensen
    Endre Süli
    [J]. Journal of Scientific Computing, 2002, 17 : 3 - 25