Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains

被引:37
|
作者
Antonietti, Paola F. [1 ]
Cangiani, Andrea [2 ]
Collis, Joe [3 ]
Dong, Zhaonan [2 ]
Georgoulis, Emmanuil H. [2 ,4 ]
Giani, Stefano [5 ]
Houston, Paul [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
[3] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[4] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Zografos 15780, Greece
[5] Univ Durham, Sch Engn & Comp Sci, South Rd, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
ELLIPTIC PROBLEMS;
D O I
10.1007/978-3-319-41640-3_9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical approximation of partial differential equations (PDEs) posed on complicated geometries, which include a large number of small geometrical features or microstructures, represents a challenging computational problem. Indeed, the use of standard mesh generators, employing simplices or tensor product elements, for example, naturally leads to very fine finite element meshes, and hence the computational effort required to numerically approximate the underlying PDE problem may be prohibitively expensive. As an alternative approach, in this article we present a review of composite/agglomerated discontinuous Galerkin finite element methods (DGFEMs) which employ general polytopic elements. Here, the elements are typically constructed as the union of standard element shapes; in this way, the minimal dimension of the underlying composite finite element space is independent of the number of geometrical features. In particular, we provide an overview of hp-version inverse estimates and approximation results for general polytopic elements, which are sharp with respect to element facet degeneration. On the basis of these results, a priori error bounds for the hp-DGFEM approximation of both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally, we present numerical experiments which highlight the practical application of DGFEMs on meshes consisting of general polytopic elements.
引用
收藏
页码:281 / 310
页数:30
相关论文
共 50 条