Hilbert Space of the Bicomplex Quantum Harmonic Oscillator

被引:0
|
作者
Lavoie, Raphael Gervais [1 ]
Marchildon, Louis [1 ]
Rochon, Dominic [2 ]
机构
[1] Univ Quebec Trois Rivieres, Dept Phys, Trois Rivieres, PQ G9A 5H7, Canada
[2] Univ Quebec Trois Rivieres, Dept Math Informat, Trois Rivieres, PQ G9A 5H7, Canada
来源
ADVANCES IN QUANTUM THEORY | 2011年 / 1327卷
基金
加拿大自然科学与工程研究理事会;
关键词
Bicomplex numbers; bicomplex quantum mechanics; modules; Hilbert spaces; harmonic oscillator; MECHANICS;
D O I
10.1063/1.3567438
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bicomplex numbers are pairs of complex numbers with a multiplication law that makes them a commutative ring. The problem of the quantum harmonic oscillator is investigated in the framework of bicomplex numbers. Starting with the commutator of the bicomplex position and momentum operators, we find eigenvalues and eigenkets of the bicomplex harmonic oscillator Hamiltonian. Coordinate-basis eigenfunctions of the Hamiltonian are then obtained in terms of hyperbolic Hermite polynomials, and some of them are graphically illustrated. These eigenfunctions form a basis of an infinite-dimensional module over bicomplex numbers, and this module can be given the structure of a bicomplex Hilbert space.
引用
收藏
页码:148 / +
页数:2
相关论文
共 50 条
  • [1] The bicomplex quantum harmonic oscillator
    Lavoie, R. Gervais
    Marchildon, L.
    Rochon, D.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (10): : 1173 - 1192
  • [2] Bicomplex quantum mechanics: II. The Hilbert space
    Rochon, D.
    Tremblay, S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (02) : 135 - 157
  • [3] Bicomplex Quantum Mechanics: II. The Hilbert Space
    D. Rochon
    S. Tremblay
    Advances in Applied Clifford Algebras, 2006, 16 : 135 - 157
  • [4] Amplitude decoherence of harmonic oscillator in finite-dimensional hilbert space
    Yu, C.G.
    Zeng, J.Y.
    Guangzi Xuebao/Acta Photonica Sinica, 2001, 30 (09):
  • [5] Wave mechanics in quantum phase space: Harmonic oscillator
    Lu, J
    PHYSICA SCRIPTA, 2004, 69 (02) : 84 - 90
  • [6] DYNAMICS OF A HARMONIC-OSCILLATOR IN A FINITE-DIMENSIONAL HILBERT-SPACE
    KUANG, LM
    WANG, FB
    ZHOU, YG
    PHYSICS LETTERS A, 1993, 183 (01) : 1 - 8
  • [7] Harmonic oscillator in Snyder space: The classical case and the quantum case
    Carlos Leiva
    Pramana, 2010, 74 : 169 - 175
  • [8] One-dimensional Harmonic Oscillator in Quantum Phase Space
    Lu, Jun
    Wang, Xue-Mei
    Wu, Ping
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3750 - 3754
  • [9] Phase-space treatment of the driven quantum harmonic oscillator
    DIÓGENES CAMPOS
    Pramana, 2017, 88
  • [10] Phase-space treatment of the driven quantum harmonic oscillator
    Campos, Diogenes
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (03):