Hilbert Space of the Bicomplex Quantum Harmonic Oscillator

被引:0
|
作者
Lavoie, Raphael Gervais [1 ]
Marchildon, Louis [1 ]
Rochon, Dominic [2 ]
机构
[1] Univ Quebec Trois Rivieres, Dept Phys, Trois Rivieres, PQ G9A 5H7, Canada
[2] Univ Quebec Trois Rivieres, Dept Math Informat, Trois Rivieres, PQ G9A 5H7, Canada
来源
ADVANCES IN QUANTUM THEORY | 2011年 / 1327卷
基金
加拿大自然科学与工程研究理事会;
关键词
Bicomplex numbers; bicomplex quantum mechanics; modules; Hilbert spaces; harmonic oscillator; MECHANICS;
D O I
10.1063/1.3567438
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bicomplex numbers are pairs of complex numbers with a multiplication law that makes them a commutative ring. The problem of the quantum harmonic oscillator is investigated in the framework of bicomplex numbers. Starting with the commutator of the bicomplex position and momentum operators, we find eigenvalues and eigenkets of the bicomplex harmonic oscillator Hamiltonian. Coordinate-basis eigenfunctions of the Hamiltonian are then obtained in terms of hyperbolic Hermite polynomials, and some of them are graphically illustrated. These eigenfunctions form a basis of an infinite-dimensional module over bicomplex numbers, and this module can be given the structure of a bicomplex Hilbert space.
引用
收藏
页码:148 / +
页数:2
相关论文
共 50 条
  • [31] Subnormality in the quantum harmonic oscillator
    Szafraniec, FH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) : 323 - 334
  • [32] Quantum Harmonic Oscillator Sonification
    Saranti, Anna
    Eckel, Gerhard
    Pirro, David
    AUDITORY DISPLAY, 2010, 5954 : 184 - 201
  • [33] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [35] A NOTE ON A QUANTUM-MECHANICAL HARMONIC-OSCILLATOR IN A SPACE OF CONSTANT CURVATURE
    KATAYAMA, N
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (07): : 763 - 768
  • [36] DEFORMED HARMONIC OSCILLATOR AND NONLINEAR COHERENT STATES: NONCOMMUTATIVE QUANTUM SPACE APPROACH
    Naderi, Mohammad Hossein
    Soltanolkotabi, Mahmood
    Roknizadeh, Rasoul
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (10): : 1963 - 1986
  • [37] Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
    Ben Geloun, J.
    Gangopadhyay, Sunandan
    Scholtz, F. G.
    EPL, 2009, 86 (05)
  • [38] Quantum uncertainties of the confined Harmonic Oscillator in position, momentum and phase-space
    Laguna, Humberto G.
    Sagar, Robin P.
    ANNALEN DER PHYSIK, 2014, 526 (11-12) : 555 - 566
  • [39] COHERENT STATES OF A HARMONIC-OSCILLATOR IN A FINITE-DIMENSIONAL HILBERT-SPACE AND THEIR SQUEEZING PROPERTIES
    KUANG, LM
    WANG, FB
    ZHOU, YG
    JOURNAL OF MODERN OPTICS, 1994, 41 (07) : 1307 - 1318
  • [40] DISCRETE QUANTUM HARMONIC OSCILLATORDISCRETE QUANTUM HARMONIC OSCILLATOR AND KRAVCHUK TRANSFORM
    Chauleur, Quentin
    Faou, Erwan
    ESAIM: Mathematical Modelling and Numerical Analysis, 2024, 58 (06) : 2155 - 2186