Hilbert Space of the Bicomplex Quantum Harmonic Oscillator

被引:0
|
作者
Lavoie, Raphael Gervais [1 ]
Marchildon, Louis [1 ]
Rochon, Dominic [2 ]
机构
[1] Univ Quebec Trois Rivieres, Dept Phys, Trois Rivieres, PQ G9A 5H7, Canada
[2] Univ Quebec Trois Rivieres, Dept Math Informat, Trois Rivieres, PQ G9A 5H7, Canada
来源
ADVANCES IN QUANTUM THEORY | 2011年 / 1327卷
基金
加拿大自然科学与工程研究理事会;
关键词
Bicomplex numbers; bicomplex quantum mechanics; modules; Hilbert spaces; harmonic oscillator; MECHANICS;
D O I
10.1063/1.3567438
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bicomplex numbers are pairs of complex numbers with a multiplication law that makes them a commutative ring. The problem of the quantum harmonic oscillator is investigated in the framework of bicomplex numbers. Starting with the commutator of the bicomplex position and momentum operators, we find eigenvalues and eigenkets of the bicomplex harmonic oscillator Hamiltonian. Coordinate-basis eigenfunctions of the Hamiltonian are then obtained in terms of hyperbolic Hermite polynomials, and some of them are graphically illustrated. These eigenfunctions form a basis of an infinite-dimensional module over bicomplex numbers, and this module can be given the structure of a bicomplex Hilbert space.
引用
收藏
页码:148 / +
页数:2
相关论文
共 50 条
  • [21] Hemispheroidal quantum harmonic oscillator
    Poenaru, D. N.
    Gherghescu, R. A.
    Solov'yov, A. V.
    Greiner, W.
    PHYSICS LETTERS A, 2008, 372 (33) : 5448 - 5451
  • [22] The quantum damped harmonic oscillator
    Um, CI
    Yeon, KH
    George, TF
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 362 (2-3): : 63 - 192
  • [23] Quaternionic quantum harmonic oscillator
    Sergio Giardino
    The European Physical Journal Plus, 136
  • [24] Quaternionic quantum harmonic oscillator
    Giardino, Sergio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [25] Quantum harmonic oscillator fluorescence
    Boye, Daniel M.
    Cain, Laurence
    Belloni, Mario
    Friedensen, Sarah
    Pruett, Nancy
    Brooks, Henry
    FIFTEENTH CONFERENCE ON EDUCATION AND TRAINING IN OPTICS AND PHOTONICS (ETOP 2019), 2019, 11143
  • [26] Subnormality in the Quantum Harmonic Oscillator
    Franciszek Hugon Szafraniec
    Communications in Mathematical Physics, 2000, 210 : 323 - 334
  • [27] KAM for the Quantum Harmonic Oscillator
    Benoît Grébert
    Laurent Thomann
    Communications in Mathematical Physics, 2011, 307 : 383 - 427
  • [28] KAM for the Quantum Harmonic Oscillator
    Grebert, Benoit
    Thomann, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 383 - 427
  • [29] Duality in the quantum harmonic oscillator
    Szafraniec, FH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10487 - 10492
  • [30] QUANTUM DISSIPATIVE HARMONIC OSCILLATOR
    Imranov, Fariz B.
    Jafarova, Aynura M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2013, 39 (47): : 157 - 164