Bicomplex Quantum Mechanics: II. The Hilbert Space

被引:0
|
作者
D. Rochon
S. Tremblay
机构
[1] Université du Québec à Trois-Rivières,Département de mathématiques et d’informatique
来源
关键词
Bicomplex numbers; hyperbolic numbers; complex Clifford algebras; generalized quantum mechanics; Hilbert spaces; free modules; linear functionals; self-adjoint operators;
D O I
暂无
中图分类号
学科分类号
摘要
Using the bicomplex numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} \cong {\hbox{Cl}}_{\mathbb{C}} (1,0) \cong {\hbox{Cl}}_{\mathbb{C}} (0,1) $$\end{document} which is a commutative ring with zero divisors defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} = \{w_0 +w_1 {\bf{i}}_{\bf 1} +w_2 {\bf{i}}_{\bf 2} + w_3 {\bf{j}} \vert w_0, w_1, w_2, w_3 \in \mathbb{R}\}$$\end{document} where i12 =  − 1, i22 =  − 1, j2 = 1 and i1i2 = j = i2i1, we construct hyperbolic and bicomplex Hilbert spaces. Linear functionals and dual spaces are considered on these spaces and properties of linear operators are obtained; in particular it is established that the eigenvalues of a bicomplex self-adjoint operator are in the set of hyperbolic numbers.
引用
收藏
页码:135 / 157
页数:22
相关论文
共 50 条
  • [1] Bicomplex quantum mechanics: II. The Hilbert space
    Rochon, D.
    Tremblay, S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (02) : 135 - 157
  • [2] Hilbert Space of the Bicomplex Quantum Harmonic Oscillator
    Lavoie, Raphael Gervais
    Marchildon, Louis
    Rochon, Dominic
    ADVANCES IN QUANTUM THEORY, 2011, 1327 : 148 - +
  • [3] Hilbert space quantum mechanics is noncontextual
    Griffiths, Robert B.
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2013, 44 (03): : 174 - 181
  • [4] Hilbert space methods and quantum mechanics
    Applebaum, Dave
    MATHEMATICAL GAZETTE, 2010, 94 (531): : 571 - 571
  • [5] Hilbert space for quantum mechanics on superspace
    Coulembier, K.
    De Bie, H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
  • [6] Quantum mechanics in an evolving Hilbert space
    Artacho, Emilio
    O'Regan, David D.
    PHYSICAL REVIEW B, 2017, 95 (11)
  • [7] Quantum mechanics as an approximation to classical mechanics in Hilbert space
    Bracken, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23): : L329 - L335
  • [8] Quantum geometrodynamics revived: II. Hilbert space of positive definite metrics
    Lang, Thorsten
    Schander, Susanne
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (18)
  • [9] The role of the rigged Hilbert space in quantum mechanics
    de la Madrid, R
    EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (02) : 287 - 312
  • [10] On the quantum mechanics of bicomplex Hamiltonian system
    Banerjee, Abhijit
    ANNALS OF PHYSICS, 2017, 377 : 493 - 505