Monte-Carlo tree search and rapid action value estimation in computer Go

被引:211
|
作者
Gelly, Sylvain [2 ]
Silver, David [1 ]
机构
[1] UCL, London WC1E 6BT, England
[2] Univ Paris 11, LRI, CNRS, INRIA, Orsay, France
关键词
Computer Go; Monte-Carlo; Search; Reinforcement learning;
D O I
10.1016/j.artint.2011.03.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new paradigm for search, based on Monte-Carlo simulation, has revolutionised the performance of computer Go programs. In this article we describe two extensions to the Monte-Carlo tree search algorithm, which significantly improve the effectiveness of the basic algorithm. When we applied these two extensions to the Go program MoGo, it became the first program to achieve dan (master) level in 9 x 9 Go. In this article we survey the Monte-Carlo revolution in computer Go, outline the key ideas that led to the success of MoGo and subsequent Go programs, and provide for the first time a comprehensive description, in theory and in practice, of this extended framework for Monte-Carlo tree search. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1856 / 1875
页数:20
相关论文
共 50 条
  • [21] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 48 - 58
  • [22] Monte-Carlo Tree Search for Policy Optimization
    Ma, Xiaobai
    Driggs-Campbell, Katherine
    Zhang, Zongzhang
    Kochenderfer, Mykel J.
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3116 - 3122
  • [23] PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J-B.
    Winands, Mark H. M.
    Van den Herik, H. Jaap
    Uiterwijk, Jos W. H. M.
    Bouzy, Bruno
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2008, 4 (03) : 343 - 357
  • [24] LinUCB Applied to Monte-Carlo Tree Search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    [J]. ADVANCES IN COMPUTER GAMES, ACG 2015, 2015, 9525 : 41 - 52
  • [25] A Parallel Monte-Carlo Tree Search Algorithm
    Cazenave, Tristan
    Jouandeau, Nicolas
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 72 - 80
  • [26] Score Bounded Monte-Carlo Tree Search
    Cazenave, Tristan
    Saffidine, Abdallah
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 93 - 104
  • [27] Improving Monte-Carlo Tree Search in Havannah
    Lorentz, Richard J.
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 105 - 115
  • [28] Split Moves for Monte-Carlo Tree Search
    Kowalski, Jakub
    Mika, Maksymilian
    Pawlik, Wojciech
    Sutowicz, Jakub
    Szykula, Marek
    Winands, Mark H. M.
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10247 - 10255
  • [29] Convex Regularization in Monte-Carlo Tree Search
    Dam, Tuan
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [30] The Multiple Uses of Monte-Carlo Tree Search
    Senington, Richard
    [J]. SPS 2022, 2022, 21 : 713 - 724