Monte-Carlo tree search and rapid action value estimation in computer Go

被引:211
|
作者
Gelly, Sylvain [2 ]
Silver, David [1 ]
机构
[1] UCL, London WC1E 6BT, England
[2] Univ Paris 11, LRI, CNRS, INRIA, Orsay, France
关键词
Computer Go; Monte-Carlo; Search; Reinforcement learning;
D O I
10.1016/j.artint.2011.03.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new paradigm for search, based on Monte-Carlo simulation, has revolutionised the performance of computer Go programs. In this article we describe two extensions to the Monte-Carlo tree search algorithm, which significantly improve the effectiveness of the basic algorithm. When we applied these two extensions to the Go program MoGo, it became the first program to achieve dan (master) level in 9 x 9 Go. In this article we survey the Monte-Carlo revolution in computer Go, outline the key ideas that led to the success of MoGo and subsequent Go programs, and provide for the first time a comprehensive description, in theory and in practice, of this extended framework for Monte-Carlo tree search. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1856 / 1875
页数:20
相关论文
共 50 条
  • [11] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [12] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [13] Towards Generalizing the Success of Monte-Carlo Tree Search beyond the Game of Go
    Gusmao, Antonio
    Raiko, Tapani
    [J]. 20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 384 - 389
  • [14] Monte-Carlo Tree Search using Batch Value of Perfect Information
    Shperberg, Shahaf S.
    Shimony, Solomon Eyal
    Felner, Ariel
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [15] Monte-Carlo Tree Search with Tree Shape Control
    Marchenko, Oleksandr I.
    Marchenko, Oleksii O.
    [J]. 2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 812 - 817
  • [16] Common Fate Graph Patterns In Monte Carlo Tree Search for Computer Go
    Graf, Tobias
    Platzner, Marco
    [J]. 2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2014,
  • [17] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [18] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [19] Monte-Carlo Tree Search in Settlers of Catan
    Szita, Istvan
    Chaslot, Guillaume
    Spronck, Pieter
    [J]. ADVANCES IN COMPUTER GAMES, 2010, 6048 : 21 - +
  • [20] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 48 - 58