Induction Networks for Few-Shot Text Classification

被引:0
|
作者
Geng, Ruiying [1 ,2 ]
Li, Binhua [2 ]
Li, Yongbin [2 ]
Zhu, Xiaodan [3 ]
Jian, Ping [1 ]
Sun, Jian [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[2] Alibaba Grp, Beijing, Peoples R China
[3] Queens Univ, ECE, Kingston, ON, Canada
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.
引用
收藏
页码:3904 / 3913
页数:10
相关论文
共 50 条
  • [41] Label Hallucination for Few-Shot Classification
    Jian, Yiren
    Torresani, Lorenzo
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7005 - 7014
  • [42] On the Importance of Distractors for Few-Shot Classification
    Das, Rajshekhar
    Wang, Yu-Xiong
    Moura, Jose M. F.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9010 - 9020
  • [43] Few-shot short-text classification with language representations and centroid similarity
    Liu, Wenfu
    Pang, Jianmin
    Li, Nan
    Yue, Feng
    Liu, Guangming
    APPLIED INTELLIGENCE, 2023, 53 (07) : 8061 - 8072
  • [44] Meta-learning triplet contrast network for few-shot text classification
    Dong, Kaifang
    Jiang, Baoxing
    Li, Hongye
    Zhu, Zhenfang
    Liu, Peiyu
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [45] Text-guided Graph Temporal Modeling for few-shot video classification
    Deng, Fuqin
    Zhong, Jiaming
    Li, Nannan
    Fu, Lanhui
    Jiang, Bingchun
    Yi, Ningbo
    Qi, Feng
    Xin, He
    Lam, Tin Lun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [46] TransPrompt: Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification
    Wang, Chengyu
    Wang, Jianing
    Qiu, Minghui
    Huang, Jun
    Gao, Ming
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 2792 - 2802
  • [47] Label Semantic Aware Pre-training for Few-shot Text Classification
    Mueller, Aaron
    Krone, Jason
    Romeo, Salvatore
    Mansour, Saab
    Mansimov, Elman
    Zhang, Yi
    Roth, Dan
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 8318 - 8334
  • [48] Few-shot short-text classification with language representations and centroid similarity
    Wenfu Liu
    Jianmin Pang
    Nan Li
    Feng Yue
    Guangming Liu
    Applied Intelligence, 2023, 53 : 8061 - 8072
  • [49] MEDA: Meta-Learning with Data Augmentation for Few-Shot Text Classification
    Sun, Pengfei
    Ouyang, Yawen
    Zhang, Wenming
    Dai, Xin-yu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3929 - 3935
  • [50] Few-Shot and Prompt Training for Text Classification in German Doctor's Letters
    Richter-Pechanski, Phillip
    Wiesenbach, Philipp
    Schwa, Dominic M.
    Kiriakou, Christina
    He, Mingyang
    Geis, Nicolas A.
    Frank, Anette
    Dieterich, Christoph
    CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 : 819 - 820