Induction Networks for Few-Shot Text Classification

被引:0
|
作者
Geng, Ruiying [1 ,2 ]
Li, Binhua [2 ]
Li, Yongbin [2 ]
Zhu, Xiaodan [3 ]
Jian, Ping [1 ]
Sun, Jian [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[2] Alibaba Grp, Beijing, Peoples R China
[3] Queens Univ, ECE, Kingston, ON, Canada
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.
引用
收藏
页码:3904 / 3913
页数:10
相关论文
共 50 条
  • [21] Compound Memory Networks for Few-Shot Video Classification
    Zhu, Linchao
    Yang, Yi
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 782 - 797
  • [22] Few-Shot Classification with Feature Map Reconstruction Networks
    Wertheimer, Davis
    Tang, Luming
    Hariharan, Bharath
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8008 - 8017
  • [23] MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text Classification
    Dong, Hongyuan
    Zhang, Weinan
    Che, Wanxiang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 426 - 436
  • [24] Noisy Channel Language Model Prompting for Few-Shot Text Classification
    Min, Sewon
    Lewis, Mike
    Hajishirzi, Hannaneh
    Zettlemoyer, Luke
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5316 - 5330
  • [25] Enhance Prototypical Network with Text Descriptions for Few-shot Relation Classification
    Yang, Kaijia
    Zheng, Nantao
    Dai, Xinyu
    He, Liang
    Huang, Shujian
    Chen, Jiajun
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2273 - 2276
  • [26] Few-Shot Text and Image Classification via Analogical Transfer Learning
    Liu, Wenhe
    Chang, Xiaojun
    Yan, Yan
    Yang, Yi
    Hauptmann, Alexander G.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (06)
  • [27] Knowledge-Enhanced Prompt Learning for Few-Shot Text Classification
    Liu, Jinshuo
    Yang, Lu
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (04)
  • [28] CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning
    He, Jianfeng
    Zhang, Xuchao
    Lei, Shuo
    Alhamadani, Abdulaziz
    Chen, Fanglan
    Xiao, Bei
    Lu, Chang-Tien
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 698 - 710
  • [29] CPCL: Conceptual prototypical contrastive learning for Few-Shot text classification
    Cheng, Tao
    Cheng, Hua
    Fang, Yiquan
    Liu, Yufei
    Gao, Caiting
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11963 - 11975
  • [30] Knowledge-Guided Prompt Learning for Few-Shot Text Classification
    Wang, Liangguo
    Chen, Ruoyu
    Li, Li
    ELECTRONICS, 2023, 12 (06)