Few-Shot and Prompt Training for Text Classification in German Doctor's Letters

被引:0
|
作者
Richter-Pechanski, Phillip [1 ,2 ,3 ,4 ]
Wiesenbach, Philipp [1 ,2 ,4 ]
Schwa, Dominic M. [2 ]
Kiriakou, Christina [2 ]
He, Mingyang [1 ,2 ]
Geis, Nicolas A. [2 ,4 ]
Frank, Anette [5 ]
Dieterich, Christoph [1 ,2 ,3 ,4 ]
机构
[1] Klaus Tschira Inst Computat Cardiol, Heidelberg, Germany
[2] Univ Heidelberg Hosp, Dept Internal Med 3, Heidelberg, Germany
[3] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg Mannheim, Berlin, Germany
[4] Informat Life, Heidelberg, Germany
[5] Heidelberg Univ, Dept Computat Linguist, Heidelberg, Germany
关键词
deep learning; prompting; language models; cardiology;
D O I
10.3233/SHTI230275
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To classify sentences in cardiovascular German doctor's letters into eleven section categories, we used pattern-exploiting training, a prompt-based method for text classification in few-shot learning scenarios (20, 50 and 100 instances per class) using language models with various pre-training approaches evaluated on CARDIO:DE, a freely available German clinical routine corpus. Prompting improves results by 5-28% accuracy compared to traditional methods, reducing manual annotation efforts and computational costs in a clinical setting.
引用
收藏
页码:819 / 820
页数:2
相关论文
共 50 条
  • [1] Adversarial training for few-shot text classification
    Croce, Danilo
    Castellucci, Giuseppe
    Basili, Roberto
    INTELLIGENZA ARTIFICIALE, 2020, 14 (02) : 201 - 214
  • [2] Enhanced Prompt Learning for Few-shot Text Classification Method
    Li R.
    Wei Z.
    Fan Y.
    Ye S.
    Zhang G.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60 (01): : 1 - 12
  • [3] Knowledge-Enhanced Prompt Learning for Few-Shot Text Classification
    Liu, Jinshuo
    Yang, Lu
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (04)
  • [4] Knowledge-Guided Prompt Learning for Few-Shot Text Classification
    Wang, Liangguo
    Chen, Ruoyu
    Li, Li
    ELECTRONICS, 2023, 12 (06)
  • [5] KPT plus plus : Refined knowledgeable prompt tuning for few-shot text classification
    Ni, Shiwen
    Kao, Hung-Yu
    KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [6] REKP: Refined External Knowledge into Prompt-Tuning for Few-Shot Text Classification
    Dang, Yuzhuo
    Chen, Weijie
    Zhang, Xin
    Chen, Honghui
    MATHEMATICS, 2023, 11 (23)
  • [7] Causal representation for few-shot text classification
    Yang, Maoqin
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21422 - 21432
  • [8] Few-shot learning for short text classification
    Yan, Leiming
    Zheng, Yuhui
    Cao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29799 - 29810
  • [9] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810
  • [10] Causal representation for few-shot text classification
    Maoqin Yang
    Xuejie Zhang
    Jin Wang
    Xiaobing Zhou
    Applied Intelligence, 2023, 53 : 21422 - 21432